350 rub
Journal Nonlinear World №2 for 2023 г.
Article in number:
Stability analysis of trajectories for three-dimensional nonlinear dynamical systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202302-06
UDC: 519.6, 519.7
Authors:

O.V. Druzhinina1, E.V. Lisovsky2

1 FRC “Computer Science and Control” of RAS (Moscow)

1 V.A. Trapeznikov Institute of Control Sciences of RAS (Moscow)

2 Kaluga branch of the Bauman MSTU (Kaluga, Russia)

Abstract:

The analysis of stability-like properties for mathematical models of nonlinear dynamical systems and the description of qualitative effects based on the study of stability of various types are important scientific areas. The problems solving within the framework of these directions include the problems of finding conditions for stability and stabilization in the sense of N.E. Zhukovsky of trajectories of dynamic systems modeled by systems of three nonlinear differential equations of the first order. The purpose of the paper is to study the stability conditions in the Zhukovsky sense for the trajectories of dynamical systems described by three-dimensional systems of nonlinear differential equations using systems of equations of perturbed motion and special equations of the first approximation. The formulation of the stability problem in the Zhukovsky sense for the trajectories of dynamical systems described by systems of three nonlinear differential equations of the first order is considered. The concretization of the principle of reducing the Zhukovsky stability problem of the positive half-trajectory of the studied three-dimensional dynamic system to the Lyapunov stability problem of solving a system of three differential equations of perturbed motion is presented. Stability conditions are obtained using the proposed concretization of the reduction principle. The structure of the equations in variations used to study the Zhukovsky stability based on the stability conditions of the first approximation is studied. The results can be used in problems of mathematical modeling and qualitative research of trajectories of nonlinear dynamic systems, as well as for the study of various processes in systems of natural science and technology.

Pages: 69-75
For citation

Druzhinina O.V., Lisovsky E.V. Stability analysis of trajectories for three-dimensional nonlinear dynamical systems. Nonlinear World. 2023. V. 21. № 2. P. 69-75. DOI: https://doi.org/10.18127/j20700970-202302-06 (In Russian)

References
  1. Zhukovskij N.E. O prochnosti dvizhenija. Uchenye zapiski Moskovskogo universiteta. Otdelenie fiziko-matematicheskoe. 1882. Vyp. 4. S. 1–104 (In Russian).
  2. Aminov M.Sh. Ob ustojchivosti nekotoryh mehanicheskih sistem. Trudy. Kazanskogo aviacionnogo in-ta. 1949. T. 24. S. 3–69 (In Russian).
  3. Galiullin A.S., Shestakov A.A. Ustojchivost' dvizhenija i variacionnye principy dinamiki. Vestnik RUDN. Ser. Prikladnaja matematika i informatika. 1996. № 2. S. 20–28 (In Russian).
  4. Leonov G.A., Ponomarenko D.V. Kriterii orbital'noj ustojchivosti traektorij dinamicheskih sistem. Izvestija vuzov. Ser. matematicheskaja. 1993. № 4. S. 88–94 (In Russian).
  5. Leonov G.A. Generalization of the Andronov–Vitt theorem. Regular and Chaotic Dynamics. 2006. V. 11. № 2. P. 281–289.
  6. Leonov G.A. Haoticheskaja dinamika i klassicheskaja teorija ustojchivosti dvizhenija. M.–Izhevsk: In-t komp'juternyh issledovanij. 2006 (In Russian).
  7. Shirjaev A.S., Husainov R.R., Mamedov Sh.N., Gusev S.V., Kuznecov N.V. O metode G.A. Leonova vychislenija linearizacii transversal'noj dinamiki i analiza ustojchivosti po Zhukovskomu. Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mehanika. Astronomija. 2019. T. 6(64). Vyp. 4. S. 544–554 (In Russian).
  8. Pupkov K.A., Pilishkin V.N. Opredelenie i ispol'zovanie ustojchivosti po N.E. Zhukovskomu dlja robastnyh (grubyh) sistem. Vestnik MGTU. Ser. Mashinostroenie. 1996. № 4. S. 103–108 (In Russian).
  9. Druzhinina O.V., Shestakov A.A. Ob uslovijah prochnosti v smysle Zhukovskogo traektorij dinamicheskih sistem. DAN. 2003. T. 393. № 4. S. 478–482 (In Russian).
  10. Druzhinina O.V., Shestakov A.A. O predel'nyh svojstvah asimptoticheski ustojchivyh po Ljapunovu i asimptoticheski prochnyh po Zhukovskomu traektorij dinamicheskih sistem. Doklady RAN. 2006. T. 409. № 2. S. 185–190 (In Russian).
  11. Druzhinina O.V., Shestakov A.A. Vzaimosvjaz' ustojchivosti po Zhukovskomu s ponjatijami ustojchivosti topologicheskoj dinamiki. Nelinejnyj mir. 2013. T. 11. № 7. S. 459–467 (In Russian).
  12. Druzhinina O.V. Ustojchivost' i stabilizacija po Zhukovskomu dinamicheskih sistem. M.: Izdatel'skaja gruppa URSS. 2013 (In Russian).
  13. Ding C., Soriano J.M. Uniformly asymptotically Zhukovskij stable orbits. Computers Math. Appl. 2005. V. 49. P. 81–84.
  14. Druzhinina O.V., Lisovskij E.V., Shhennikova E.V., Kaledina E.A. Analiz ustojchivosti traektorij dinamicheskih sistem, modeliruemyh nelinejnymi vektorno-matrichnymi differencial'nymi uravnenijami. Nelinejnyj mir. 2020. T. 18. № 4. S. 5–14 (In Russian).
  15. Druzhinina O.V., Lisovskij E.V. Issledovanie ustojchivosti po Zhukovskomu traektorij dinamicheskih sistem, modeliruemyh nelinejnymi vektorno-matrichnymi uravnenijami. Nelinejnyj mir. 2019. T. 17. № 2. S. 40–47 (In Russian).
Date of receipt: 28.04.2023
Approved after review: 18.05.2023
Accepted for publication: 22.05.2023