350 rub
Journal Nonlinear World №3 for 2022 г.
Article in number:
Analysis of the features of using fast algorithms to solve problems of modeling nonlinear systems using the Elbrus computing platform
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202203-01
UDC: 517.9, 519.6, 004.021
Authors:

O.V. Druzhinina1, E.R. Korepanov2, V.V. Belousov3

1-3 FRС «Computer Science and Control» of RAS (Moscow, Russia)

Abstract:

The development of tool support, increasing the efficiency of application development, improving the methods of accelerating computing to solve research problems of modeling nonlinear controlled systems using domestic software and hardware are relevant areas of research.The objectives of the study include the analysis of ways to accelerate calculations using the Elbrus computing platform, as well as the characteristics of the capabilities of the Elbrus architecture (e2k architecture and its subsequent versions) and blocks of the built-in EML mathematical library for the construction and implementation of fast algorithms used to solve matrix Riccati equations. The analysis of the possibilities of improving performance indicators is carried out and the features of the implementation of fast algorithms using the Elbrus architecture are characterized. Methods of numerical investigation of properties of matrix Riccati equations are systematized. Modern methods of designing nonlinear regulators, observation devices and filters based on the solution of the Riccati equations with state-dependent coefficients are described. To solve the matrix Riccati equation, the results of implementing algorithms using the Elbrus computing platform are presented. The results can be used to create algorithmic and software for solving problems of modeling nonlinear systems, problems of synthesis of suboptimal regulators, analysis and filtering of processes in deterministic and stochastic systems.

Pages: 5-16
For citation

Druzhinina O.V., Korepanov E.R., Belousov V.V. Analysis of the features of using fast algorithms to solve problems of modeling nonlinear systems using the Elbrus computing platform. Nonlinear World. 2022. V. 20. № 3. P. 5-16.
DOI: https://doi.org/10.18127/j20700970-202203-01 (In Russian)

References
  1. Rabochaja stancija «Jel'brus 801-RS» [Jelektronnyj resurs]. URL= http://www.mcst.ru/elbrus_801-pc/ (data obrashhenija: 25.04.2022) (In Russian).
  2. Nejman-zade M.I., Koroljov S.D. Rukovodstvo po jeffektivnomu programmirovaniju na platforme «Jel'brus». Vyp. 1.0 ot 30.05.2020. M.: AO «MCST». 2020 (In Russian).
  3. http://www.mcst.ru/files/5ed39a/dd0cd8/50506b/000000/elbrus_prog_2020-05-30.pdf (In Russian).
  4. Ishin P.A., Loginov V.E., Vasil'ev P.P. Uskorenie vychislenij s ispol'zovaniem vysokoproizvoditel'nyh matematicheskih i mul'timedijnyh bibliotek dlja arhitektury Jel'brus. Vestnik VKO. 2015. № 4(8). S. 64–68. 12 (In Russian).
  5. Druzhinina O.V., Korepanov Je.R., Belousov V.V., Masina O.N., Petrov A.A. Razvitie instrumental'nogo obespechenija otechestvennoj vychislitel'noj platformy «Jel'brus 801-RS» v zadachah nejrosetevogo modelirovanija nelinejnyh dinamicheskih sistem. Nelinejnyj mir. 2021. T. 19. № 1. S. 15–28 (In Russian).
  6. Druzhinina O.V., Korepanov Je.R., Belousov V.V., Masina O.N., Petrov A.A. Opyt razrabotki metodov i sredstv nejrosetevogo modelirovanija nelinejnyh sistem na baze otechestvennoj vychislitel'noj platformy «Jel'brus 801-PC». Nelinejnyj mir. 2020.
    T. 18. № 2. S. 5–17 (In Russian).
  7. Reid W.T. Riccati Differential Equations. London: Academic Press. 1972.
  8. Lancaster P., Rodman L. Algebraic Riccati Equations. Oxford: OUP. 1995.
  9. Pugachev V.S. Ocenivanie sostojanija i parametrov nepreryvnyh nelinejnyh sistem. Avtomatika i telemehanika. 1979. Vyp. 6.
    S. 63–79 (In Russian).
  10. Balakrishnan A.V. Teorija fil'tracii Kalmana. M.: Mir. 1988 (In Russian).
  11. Cloutier J.R. State-Dependent Riccati Equation Techniques: An Overview. Proc. American Control Conference. 1997. V. 2.
    P. 932–936.
  12. Cimen T. State-dependent Riccati equation (SDRE) control: A Survey. Proc. of the 17th IFAC World Congress (IFAC'08). Seoul, Korea, July 6-11 2008. P. 3761–3775.
  13. Mracek C. P., Cloutier J. R.Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method. International Journal of Robust and Nonlinear Control. 1998. № 8. P. 401–433.
  14. Heydari A., Balakrishnan S. N. Closed-Form Solution to Finite-Horizon Suboptimal Control of Nonlinear Systems. International Journal of Robust and Nonlinear Control. 2015. V. 25. № 15. P. 2687–2704.
  15. Chang I., Bentsman J. Constrained discrete-time state-dependent Riccati equation technique: A model predictive control approach. 52nd IEEE Conference on Decision and Control. Florence, Italy, December 10–13 2013. 2013. P. 5125–5130.
  16. Zhang Y., Naidu D. S., Cai C. X., Zou Y. Composite control of a class of nonlinear singularly perturbed discrete-time systems via D-SDRE. Proc. of the International Journal of Systems Science. New York: IEEE Digital Library. 2015. P. 1–10.
  17. Dutka A. S., Ordys A. W., Grimble M. J. Optimized discrete-time state dependent Riccati equation regulator. Proceedings of the American Control Conference (ACC 2005). IEEE. 2005. P. 2293–2298.
  18. Danik Yu. E., Dmitriev M. G. A comparison of numerical algorithms for discrete-time state dependent coefficients control system. Proc. of the 2017 21st International Conference on System Theory, Control and Computing (ICSTCC). New York: IEEE Digital Library. 2017. P.401–406.
  19. Mehrmann V., Van Dooren P. M. Optimal robustness of port-Hamiltonian systems. SIAM J. Matrix Anal. Appl. 2020.
    V. 41. № 1. P. 134–151.
  20. Bankmann D., Mehrmann V., Nesterov Yu., Van Dooren P. Computation of the analytic center of the solution set of the linear matrix inequality arising in continuousand discrete-time passivity analysis. Vietnam Journal of Mathematics. 2020. V. 48.
    P. 633–659.
  21. Faraoni V. Helmoltz problem for the Riccati equation from an analogous Friedmann equation. European Physical Jornal. 2022. V. 82. Article number:13.
  22. Timofejeva I., Telksnys T., Navickas Z., Marcinkevicius R., Ragulskis M. Higher order solitary solutions to the meta-model of diffusively coupled Lotka–Volterra systems. Advances in Difference Equations, Springer 2021. № 1. Article number:133.
  23. Fernandes da Costa R., Saotom O., Rafikova E., Machado R. Fast real-time SDRE controllers using neural networks. ISA Transactions. 2021. V. 118. P. 133–143.
  24. Kvakernaak H., Sivan R. Linejnye optimal'nye sistemy uravnenij. M.: Mir. 1977 (In Russian).
  25. Abramov S.A. Lekcii o slozhnosti algoritmov. M.: Izd-vo MCNMO. 2009 (In Russian).
  26. Barabanov A.E., Sitnikov V.I. Faktorizacija kvazimnogochlena bol'shoj stepeni. Vestnik Sankt-Peterburgskogo universiteta. 2006. Ser. 1. Vyp. 1. S. 3–11 (In Russian).
Date of receipt: 08.06.2022
Approved after review: 22.06.2022
Accepted for publication: 25.07.2022