Journal Nonlinear World №1 for 2021 г.
Article in number:
The point free Colombeau geometry in singular general relativity
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202101-06
UDC: 530.12,531.134,537.9
Authors:

Ja. Foukzon¹, A.A. Potapov², E.R. Men'kova³

1 Center for Mathematical Sciences, Israel Institute of Technology (Haifa, Israel)

2 V.A. Kotel’nikov Institute of Radioengineering and Electronics of RAS (Moscow, Russia);

3 All-Russian Research Institute for Optical and Physical Measurements (Moscow, Russian)

Abstract:

The problem statement. We argue that the canonical interpretation of the Schwarzschild spacetime in contemporary general relativity is wrong and that revision is needed. And we argue that the Schwarzschild solution is impossible to treat classically, since the Levi-Cività connection is not available for the whole Schwarzschild spacetime (Sch,gijSch (t r, , ,θϕ)) ; where Sch=×(({r ≥ 2m} {∪ ≤ ≤0 r 2m})×S2) ; but it can only be treated by using an embedding of the classical Schwarzschild metric tensor gijSch; ,i j =1,2,3,4  into Colombeau algebra δ(4,Σ),Σ= ={r 2m} {∪ =r 0} supergeneralized functions. The classical Schwarzschild spacetime could be extended up to the distributional semi-Riemannian manifold endowed on the tangent bundle with the Colombeau distributional metric tensor.    

The aim. The development of new physical interpretation for the distributional curvature scalar (Rε( )r )ε  and square scalar (Rεμν( )r Rμνε, ( )r )ε, (Rερσμν( )r Rρδμνε, ( )r )εis aimed.

Results. The Schwarzschild solution using Colombeau distributional geometry without leaving Schwarzschild coordinates

(t r, , ,θϕ) is studied. We obtain that the distributional Ricci tensor and the curvature scalar are δ-type, (R rε( ))ε=−m rδ( − 2m) ,>0 . 

The practical value. As distributional square scalars are essentially nonclassical Colombeau type distributions:

(Rεμν( )r Rμνε, ( )r )ε, (Rερσμν( )r Rρσμνε, ( )r )ε∈(3 )\ ′(3 ), this provides a new physical interpretation for the distributional curvature scalar (R rε( ))ε  and square scalars (Rεμν( )r Rμνε, ( )r )ε, (Rερσμν( )r Rρδμνε, ( )r )ε.

Pages: 58-72
For citation

Foukzon Ja., Potapov A.A., Men'kova E.R. The point free Colombeau geometry in singular general relativity. Nonlinear World. 2021. V. 19. № 1. 2021. P. 58−72. DOI: https://doi.org/10.18127/j20700970-202101-06

References
  1. Colombeau J.F.New Generalized Functions and Multiplication of Distributions. North Holland, Amsterdam. 1984.
  2. Colombeau J.F.Elementary Introduction to New Generalized Functions. North Holland, Amsterdam. 1985.
  3. Foukzon J., Potapov A., Men'kova E. Distributional SAdS BH Spacetime-Induced Vacuum Dominance // British Journal of Mathematics & Computer Science. 2016. V. 13. № 6. Р. 1−54. Article no. BJMCS. 19235. https://doi.org/10.9734/BJMCS/2016/19235
  4. Foukzon J., Potapov A., Men'kova E., and Podosenov S. Was Polchinskiwrong ? Colombeau distributional Rindler space-time with distributional Levi-Cività connection induced vacuum dominance. Unruh effect revisited // J. Phys.: Conf. Ser., 2018.1141 012100.doi:10.1088/1742-6596/1141/1/012100. https://iopscience.iop.org/article/10.1088/1742-6596/1141/1/012100
  5. Foukzon J.Colombeau solutions to Einstein field equations. Gravitational singularities.2019. Preprint 28 p.doi: 10.13140/RG.2.2.30613.27365. https://www.researchgate.net/publication/336604292_Colombeau_solutons_v3
  6. Euclid, Elements of Geometry /Trans. by R. Fizpatrick. 2008.http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
  7. Tozzi A. and Peters J.F. Towards a point-free physics: why Euclidean geometry is scientifically untenable. Preprint. April 2018.doi: 10.13140/RG.2.2.17187.14881
  8. Tozzi A. and Peters J.F. Points and lines inside human brains // Cogn. Neurodyn. 2019. № 13. Р. 417. https://doi.org/10.1007/s11571-019-09539-8
  9. Concilio A.Di. Point-Free Geometries: Proximities and Quasi-Metrics // Mathematics in Computer Science. 2013. V.7. № 1. March. doi: 10.1007/s11786-013-0140-2 
  10. Parker P.E. // J. Math. Phys. 1979. № 20. Р. 1423.
  11. Vickers J.A. Distributional geometry in general relativity // Journal of Geometry and Physics. 2012. V. 62. Is. 3. Р. 692−705.https://doi.org/10.1016/j.geomphys.2011.04.018
  12. Vickers J.A., Wilson J.P. Invariance of the distributional curvature of the cone under smooth diffeomorphisms // Class. Quantum Grav. 1999. № 16. Р. 579−588.
  13. Vickers J.A. Nonlinear generalized functions in general relativity, in Nonlinear Theory of Generalized Functions. Chapman & Hall/CRC // Research Notes in Mathematics. 1999. № 401. Р. 275−290.Eds. M. Grosser, G. Hörmann, M. Kunzinger,  M. Oberguggenberger (Chapman & Hall CRC, Boca Raton. 1999).
  14. Geroch R., Traschen J. Strings and other distributional sources in general relativity // Phys. Rev. D. 1987. №36.  Р. 1017−1031. 
  15. Balasin H., Nachbagauer H. On the distributional nature of the energy-momentum tensor of a black hole or What curves the Schwarzschild geometry? // Class. Quant. Grav. 1993. № 10. Р. 2271−2278. 
  16. Balasin H., Nachbagauer H. Distributional energy-momentum tensor of the Kerr-Newman space-time family // Class. Quant. Grav. 1994. № 11. Р. 1453−1461.  
  17. Clarke C.J.S., Vickers J.A., Wilson J.P. Generalized functions and distributional curvature of cosmic strings // Class. Quant. Grav.1996. № 13. Р. 2485−2498. 
  18. Pantoja N., Rago H.Energy-momentum tensor valued distributions for the Schwarzschild and ReissnerNordstrømgeometries. Preprint, gr-qc/9710072. 1997. 
  19. Pantoja N., Rago H. Distributional sources in General Relativity: Two point-like examples revisited. Preprint, grqc/0009053. 2000. 
  20. Kunzinger M., Steinbauer R. Nonlinear distributional geometry // Acta Appl. Math. 2001. 
  21. Kunzinger M., Steinbauer R. Generalized pseudo-Riemannian geometry. Preprint, mathFA/0107057. 2001. 
  22. Grosser M., Farkas E., Kunzinger M., Steinbauer R. On the foundations of nonlinear generalized functions I, II // Mem. Am. Math. Soc. 2001.№ 153. Р. 729. 
  23. Grosser M., Kunzinger M., Steinbauer R., Vickers J. A global theory of nonlinear generalized functions // Adv. Math., to appear 2001. 
  24. Schwartz L., Sur l'impossibilité de la multiplication des distributions // C. R.Acad. Sci. Paris.1954. № 239. Р. 847−848. 
  25. Gelfand I.M., Schilov G.E.Generalized functions. V. I: Properties and operations.New York, London.Academic Press.1964. 
  26. Parker P. Distributional geometry // J. Math. Phys. 1979. № 20. Р. 1423−1426. 
  27. Debney G., Kerr R., Schild A. Solutions of the Einstein and Einstein-Maxwell equations // J. Math. Phys.1969. № 10. Р. 1842−1854.
  28. Heinzle J.M., Steinbauer R.Remarks on the distributional Schwarzschild geometry. Preprint, gr-qc/0112047. 2001. 
  29. Abramowitz M., Stegun I.A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9-th printing. New York: Dover. 1972. 
  30. Bracewell R. Heaviside's Unit Step Function. The Fourier Transform and Its Applications. 3-rd ed. New York: McGrawHill. 1999. Р. 57−61.
  31. Israel W. // Nuovo Cimento. 1966. № 44. Р. 1; 1967. № 48. Р. 463. 
  32. Raju C.K.J. // Phys. A: Math. Gen. 1982. № 15. Р. 1785.
  33. Geroch R.P. // Traschen. J. Phys. Rev. D. 1987. № 38. Р. 1017.
  34. Kawai T., Sakane E. Distributional Energy-Momentum Densities of Schwarzschild Space-Time // Prog. Theor. Phys. 1997.№ 98. Р. 69−86. Preprint grqc/9707029. 1998. 
  35. Golubev M.B., Kelner S.R. The gravitational field of a point charge and finiteness of self-energy // JETP. 2005. V. 101.  № 6. Р. 1071−1076.
  36. Einstein A. and Rosen N. The Particle Problem in the General Theory of Relativity // Phys. Rev. 1935. № 48. Р. 73. Published 1 July 1935. 
  37. Foukzon J. Distributional Schwarzschild Geometry from nonsmooth regularization via horizon. Distributional Rindler spacetime with distributional Levi-Cività connection induced vacuum dominance. 2017, arXiv: 0806.3026v6
  38. Foukzon J., Potapov A., Men'kova E. Was PolchinskiWrong? Colombeau Distributional Rindler Space-Time with Distributional Levi-Cività Connection Induced Vacuum Dominance. Unruh Effect Revisited // Journal of High Energy Physics, Gravitation and Cosmology. 2018. V. 4. № 2. Р. 361. Paper ID 84304. 80 p.doi:10.4236/jhepgc.2018.42023
  39. Foukzon J. Remarks on Mӧller Mistaken Famous Paper from 1943. viXra: 1907.0116 submitted on 2019-07-07 12:01:37. http://vixra.org/abs/1907.0116
  40. Foukzon J., Men'kova E., Potapov A. Singular general relativity using the Colombeau approach. I. Distributional Schwarzschild geometry from nonsmooth regularization via horizon // Physics Essays. 2020. V. 33. № 2. Р. 180−199. Publisher: Physics          Essays         Publication.doi:https://doi.org/10.4006/0836-1398-33.2.180.         https://www.ingentaconnect.com/content/pe/pe/2020/00000033/00000002/art00009
  41. Foukzon J., Men'kova E., Potapov A. Singular general relativity. Colombeau approach: Point free Colombeau geometry, classical and quantum. ISBN: 978-6202686075. LAP LAMBERT Academic Publishing, 2020 (in press).  
Date of receipt: 27.11.2020
Approved after review: 24.12.2020
Accepted for publication: 03.03.2021