350 rub
Journal Nanotechnology : the development , application - XXI Century №4 for 2025 г.
Article in number:
Modeling of individual harmonics of the magnetoelectric effect in the COMSOL Multiphysics software package
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202504-02
UDC: 537.633.9
Authors:

M.V. Dzhaparidze1, L.Y. Fetisov2, F.A. Fedulov3

1–3 MIREA – Russian Technological University (Moscow, Russia)
1 m.v.dzhaparidze@mail.ru, 2 fetisovl@yandex.ru, 3 ostsilograf@ya.ru

Abstract:

The purpose of this work was to make computer calculations of the field dependences of individual harmonics of the nonlinear magnetoelectric (ME) effect in composite magnetostrictor/piezoelectric/magnetostrictor structures enable. Nowadays, a large number of ME models of composites have been created in various software environments, however, they made it possible to obtain either distributions of various physical quantities over the volume of the composite, or to obtain approximate dependences of ME on a constant magnetic field (in the absence of an alternating one). In this paper, we propose a new algorithm for calculating the magnetoelectric effect in the COMSOL Multiphysics 6.0 software package, which allows us to take into account the appearance of nonlinear harmonics in the ME voltage spectrum when both direct and alternating fields are applied to the sample. The method was based on the combination of a linear composition of solutions to differential equations obtained at different points in time, describing the magnetoelectric effect. For instance, the amplitude of the first harmonic was calculated by adding half the difference between the ME voltage at time 0 and time 1/(2f), and half the difference between the ME voltage at 1/(8f) and 3/(8f), divided by 20.5, and then dividing the result buy two. The amplitude of the second harmonic was calculated by subtracting a quarter of the difference between the ME voltage values at time 0 and time 1/(2f) from the value of the ME voltage at time 1/(4f). The amplitude of the third harmonic was found by taking a third of the difference between half the difference in the ME voltage between times 0 and 1/2f, and the difference in ME voltages at times 1/6f and 1/3f. The advantage of this method is that it allows us to isolate individual components of different harmonics from the overall spectrum of the magnetoelectric voltage. We used this method to calculate the field and amplitude dependence of the first three harmonics in a three-layer composite structure made from a piezoelectric langatate single crystal and amorphous metal glass alloy layers. It has been shown that the dependencies obtained using the method described in this paper fit the experimental data quite well. Therefore, this calculation method is suitable for modeling promising magnetoelectric (ME) systems and can be widely used in the future. This is because it allows us to predict the behavior of various ME composites without the need for measurements, which could be useful in the search for new and more promising ME composites.

Pages: 15-27
For citation

Dzhaparidze M.V., Fetisov L.Y., Fedulov F.A. Modeling of individual harmonics of the magnetoelectric effect in the COMSOL Multiphysics software package. Nanotechnology: development and applications – XXI century. 2025. V. 17. № 4. P. 15–27. DOI: https://doi.org/10.18127/ j22250980-202504-02 (in Russian)

References
  1. Van Suchtelen J. Product properties: A new application of composite materials. Philips Res. Rep. 1972. V. 27. P. 28–37.
  2. Nan C.-W., Bichurin M.I., Dong S., Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. JAP. 2008. V. 103. P. 031101.
  3. Fetisov Yu.K. Magnitoelektricheskij effekt v mnogoslojnyh strukturah magnetik-p'ezoelektrik i ego primeneniya. Radiotekhnika. 2007. № 9. S. 78–82 (in Russian).
  4. Bichurin M., Petrov R., Sokolov O., Leontiev V., Kuts V., Kiselev D., Wang Y. Magnetoelectric magnetic field sensors: A review. Sensors. 2021. V. 21. P. 6232.
  5. Liang X., Chen H., Sun N. X. Magnetoelectric materials and devices. APL Mater. 2021. V. 9. P. 041114.
  6. Pereira N., Lima A.C., Lanceros-Mendez S., Martins P. Magnetoelectrics: Three centuries of research heading towards the 4.0 industrial revolution. Materials. 2020. V. 13. P. 4033.
  7. Buharev A.A., Zvezdin A.K., Pyatakov A.P., Fetisov Yu.K. Strejntronika – novoe napravlenie mikro- i nanoelektroniki i nauki o materialah. Uspekhi fizicheskih nauk. 2018. № 188. S. 1288–1330 (in Russian).
  8. T'erselan N., Dush Yu., Preobrazhenskij V., Perno P. Magnitoelektricheskaya yachejka pamyati na osnove mul'tiferroidnyh nanostruktur i magnetouprugogo pereklyucheniya. Naukoemkie tekhnologii. 2011. № 12. S. 16–20 (in Russian).
  9. Fetisov Y.K., Srinivasan G. Nonlinear magnetoelectric effects in layered multiferroic composites. J. Appl. Phys. 2024. V. 135. P. 024102.
  10. Fedulov F.A., Fetisov L.Y., Fetisov Y.K., Makovkin A.V. Magnetic field sensor based on magnetoelectric effect of frequency doubling in a ferromagnetic-piezoelectric structure. Nano Microsyst. 2021. V. 5, 6. P. 59–62.
  11. Fetisov Y.K., Burdin D.A., Chashin D.V., Ekonomov N.A. High-sensitivity wideband magnetic field sensor using nonlinear resonance magnetoelectric effect. IEEE Sens. J. 2012. V. 14. P. 2252–2256.
  12. Burdin D., Chashin D., Ekonomov N., Fetisov L., Fetisov Y., Shamonin M. D.C. Magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures. J. Phys. D: Appl. Phys. 2016. V. 49. P. 375002.
  13. Burdin D.A., Chashin D.V., Ekonomov N.A., Fetisov Y.K., Stashkevich A.A. High-sensitivity DC field magnetometer using nonlinear resonance magnetoelectric effect. J. Magn. Magn. Mater. 2016. V. 405. P. 244–248.
  14. Chu Z., Shi H., PourhosseiniAsl M.J., Wu J., Shi W., Gao X., Yuan X., Dong S. A magnetoelectric flux gate: New approach for weak DC magnetic field detection. Sci. Rep. 2017. V. 7. P. 8592.
  15. Li M., Dong C., Zhou H., Wang Z., Wang X., Liang X., Lin Y., Sun N.-X. Highly sensitive DC magnetic field sensor based on nonlinear ME effect. IEEE Sens. Lett. 2017. V. 1(6). P. 1–4.
  16. Chen R., Deng T., Chen Z., Wang Y., Di W., Lu L., Jiao J., Luo H. Differential configuration for highly sensitive DC magnetic field sensing based on nonlinear magnetoelectric effect. IEEE Sens. J. 2022. V. 22(18). P. 17754–17760.
  17. Fedulov F.A., Fetisov L.Y., Chashin D.V., Saveliev D.V., Burdin D.A., Fetisov Y.K. Magnetic field spectrum analyzer using nonlinear magnetoelectric effect in composite ferromagnet – piezoelectric heterostructure. J. Magn. Magn. Mater. 2022. V. 346. P. 113844.
  18. Avellaneda M., Harshé G. Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2–2) composites. J. Intell Mater Syst Struct. 1994. V. 5. P. 501–513.
  19. Srinivasan G., Rasmussen E., Levin B., Hayes R. Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B. 2002. V. 65. P. 134402.
  20. Mori K., Wuttig M. Magnetoelectric coupling in Terfenol-D/Polyvinylidenedifluoride composites. Appl. Phys. Lett. 2002. V. 81.
    P. 100–101.
  21. Nan C.-W., Li M., Huang J.H. Calculations of giant magnetoelectric effects in ferroic composites of rare-earth–iron alloys and ferroelectric polymers. Phys. Rev. B. 2001. V. 63. P. 144415.
  22. Li J.Y. Magnetoelectric Green’s functions and their application to the inclusion and inhomogeneity problems. Int. J. Solids Struct. 2002. V. 39. P. 4201–4213.
  23. Nan C.-W., Liu G., Lin Y., Chen H. Magnetic field induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 2005. V. 94. P. 197203.
  24. Ryu J., Carazo A.V., Uchino K., Kim H.-E. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 2001. V. 40. P. 4948–4951.
  25. Filippov D.A. Theory of the magnetoelectric effect in ferromagnetic–piezoelectric heterostructures. Phys. Solid State. 2005. V. 47. P. 1118–1121.
  26. Cao H., Zhang N. Elastomechanical study of interface coupling in magnetoelectric bilayers. Acta Phys. Sin. 2008. V. 57. P. 3237–3243.
  27. Bao B., Luo Y. Theory of magnetoelectric effect in laminate composites considering two-dimensional internal stresses and equivalent circuit. J. Appl. Phys. 2011. V. 109. P. 094503.
  28. Dong S.-X., Zhai J.-Y. Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites. Chin. Sci. Bull. 2008. V. 53. P. 2113–2123.
  29. Blackburn J.F., Vopsaroiu M., Cain M.-G. Verified finite element simulation of multiferroic structures: solutions for conducting and insulating systems. J. Appl. Phys. 2008. V. 104. P. 074104.
  30. Pan E., Wang R. Effects of geometric size and mechanical boundary conditions on magnetoelectric coupling in multiferroic composites. J. Phys. D: Appl. Phys. 2009. V. 42. P. 245503–245509.
  31. Zadov B., Elmalem A., Paperno E., Gluzman I., Nudelman A., Levron D., Grosz A., Lineykin S., Liverts E. Modeling of small DC magnetic field response in trilayer magnetoelectric laminate composites. Adv. Condens. Mater. Phys. 2012. P. 448–454.
  32. Gao Y.-W., Zhang J.-J. Nonlinear magneto-electric response of a giant magnetostrictive/piezoelectric composite cylinder. Acta Mech. Sin. 2012. V. 28. P. 385–392.
  33. Shi Y., Gao Y.-W. Theoretical study on nonlinear magnetoelectric effect and harmonic distortion behavior in laminated composite.
    J. Alloys Compd. 2015. V. 646. P. 351–359.
  34. Zhang J., Gao Y. Effects of hysteresis and temperature on magnetoelectric effect in giant magnetostrictive/piezoelectric composites. Int. J. Solids Struct. 2015. V. 69–70. P. 291–304.
  35. Shi Y., Li N., Wang Y., Ye J. An analytical model for nonlinear magnetoelectric effect in laminated composites. Comp. Struct. 2021. V. 263. P. 113652.
  36. Fetisov L.Y., Burdin D.A., Ekonomov N.A., Chashin D.V., Zhang J., Srinivasan G., Fetisov Y.K. Nonlinear magnetoelectric effects in high magnetic field amplitudes in composite multiferroics. J. Phys. D. 2018. V. 51. P. 154003.
  37. Vonsovskij S.V. Magnetizm. Magnitnye svojstva dia-, para-, ferro-, antiferro- i ferrimagnetikov. M.: Nauka. 1971. 1032 s. (in Russian).
  38. Nikitin A.O. Simulyaciya magnitoelektricheskoj struktury v SVCh-diapazone. Vestnik NovGU. 2018. № 3(109). S. 27–30 (in Russian).
  39. Fetisov L.Y., Dzhaparidze M.V., Savelev D.V., Burdin D.A., Turutin A.V., Kuts V.V., Milovich F.O., Temirov A.A., Parkhomenko Y.N., Fetisov Y.K. Magnetoelectric Effect in Amorphous Ferromagnetic FeCoSiB/Langatate Monolithic Heterostructure for Magnetic Field Sensing. Sensors. 2023. V. 23. P. 4523.
  40. Fetisov L., Chashin D., Saveliev D., Plekhanova D., Makarova L., Stognii A. Magnetoelectric effect in ferromagnetic-semiconductor layered composite structures. EPJ Conferences. 2018. V. 185. P. 07005.
  41. Fetisov L.Y., Saveliev D.V., Fedulov F.A., Chashin D.V., Fetisov Y.K. Frequency Doubler Based on Nonlinear Magnetoelectric Effect in a Planar Metglas/Langatate/Metglas Heterostructure. J. of Communication Technology and Electronics. 2023. V. 68. № 3.
    P. S299–S303.
Date of receipt: 30.09.2025
Approved after review: 23.10.2025
Accepted for publication: 10.11.2025