350 rub
Journal Nanotechnology : the development , application - XXI Century №3 for 2025 г.
Article in number:
Lasers on quantum dots: efficiency and reliability in space applications
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202503-01
UDC: 620.3
Authors:

A.O. Sinelnikov1, P.S. Kuznetsov2, A.A. Kuznetsova3

1,3 Patrice Lumumba Peoples' Friendship University of Russia (Moscow, Russia)
2 JSC «GOSNIIP» (Moscow, Russia)
1 sinelnikov-ao@pfur.ru, 2 ps_kuznetsov@mail.ru, 3 aniakuzneczova@yandex.ru

Abstract:

Objective: To investigate the characteristics of quantum dots as components of lasers and reflective coatings through the analysis of the impact of various methods of their fabrication and processing. These factors significantly influence the performance, reliability, and spectral characteristics of optoelectronic devices.

Results: The study of the influence of quantum dot parameters, such as size and shape, on their optical properties, including bandgap width and luminescent characteristics, as well as the assessment of how these parameters affect the structural and functional characteristics of nanostructures, allows for a deeper understanding of the potential applications of quantum dots in modern optoelectronic devices. This data contributes to the development of more efficient laser technologies and reflective coatings.

Practical Significance: The presented work is crucial for deepening knowledge about quantum dot lasers and other radiation sources in the optical range. Investigating their characteristics and potential applications opens new horizons for developing highly efficient laser technologies and optoelectronic devices. The results obtained may serve as a foundation for creating high-precision sensors and actuators in nanoelectromechanical systems, which is particularly relevant for onboard systems of small spacecraft. This will significantly enhance the reliability and performance of optical systems used in space research and other high-tech fields.

Pages: 5-11
For citation

Sinelnikov A.O., Kuznetsov P.S., Kuznetsova A.A. Lasers on quantum dots: efficiency and reliability in space applications. Nanotechnology: development and applications – XXI century. 2025. V. 17. № 3. P. 5–11. DOI: https://doi.org/10.18127/ j22250980-202503-01 (in Russian)

References
  1. Farrakhov B.F., Fattakhov Ya.V., Stepanov A.L. Modification of the Implanted Silicon Surface by a Powerful Light Pulse. Bulletin of the Russian Academy of Sciences: Physics. 2024. V. 88. № 7. P. 1122–1125. DOI 10.1134/S1062873824707189.
  2. Jiang Wu, Siming Chen, Alwyn Seeds, Huiyun Liu. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells IOP Publishing Ltd, 2015.
  3. Norman Ju. C., Mirin R.P., Bowers J.E. Quantum dot lasers-History and future prospects Vac. Sci. Technol. 2021. DOI: 10.1116/6.0000768.
  4. Leonard D., Krishnamurthy M., Fafard S., Merz J.L., Petroff P.M. Molecular‐beam epitaxy growth of quantum dots from strained coherent uniform islands of InGaAs on GaAs Sci. Technol. 1994. DOI: 10.1116/1.587088
  5. Moison J.M., Houzay F., Barthe F., Leprince L., André E., Vatel O. Self-organized growth of regular nanometer-scale InAs dots on GaAs Appl. Phys. Lett. 1994. DOI: 10.1063/1.111502.
  6. Rajaei E., Kariminezhad F. Effect of optical gain broadening on the dynamic characteristics of InGaAs/GaAs quantum dot laser based on a multi-population rate equations model. Journal of Nanoelectronics and Optoelectronics. 2017. V. 12. № 3. P. 291–295. DOI 10.1166/jno.2017.2016.
  7. Savchenko S., Vokhmintsev A., Karabanalov M. et al. Thermally assisted optical processes in InP/ZnS quantum dots. PCCP: Physical Chemistry Chemical Physics. 2024. V. 26. № 27. P. 18727–18740. DOI 10.1039/d3cp03931e.
  8. Zhou R. Recent Advances in Nanomaterial Applications: A Comprehensive Review. Highlights in Science, Engineering and Technology. 2024. V. 121. P. 392–399. DOI 10.54097/g5vecp16.
  9. Arzhanov A.I., Savost'yanov A.O., Magaryan K.A. i dr. Fotonika poluprovodnikovyh kvantovyh tochek: prikladnye aspekty. Fotonika. 2022. T. 16. № 2. S. 96–113. DOI 10.22184/1993-7296.FRos.2022.16.2.96.112 (in Russian).
  10. Asadi F., Zarifkar A. Uluchshenie dinamiki lazera na kvantovyh tochkah s tunnel'noj inzhekciej v usloviyah obratnoj svyazi. Kvantovaya elektronika. 2016. T. 46. № 10. S. 883–887(in Russian).
  11. Asryan L.V. Lazery na kvantovyh tochkah s asimmetrichnymi bar'ernymi sloyami: blizkie k ideal'nym porogovye i moshchnostnye harakteristiki. Kvantovaya elektronika. 2019. T. 49. № 6. S. 522–528 (in Russian).
  12. Belyaev V., Yazbek H. Primenenie tekhnologii kvantovyh tochek dlya elektroopticheskih i optoelektronnyh ustrojstv. Elektronika: nauka, tekhnologiya, biznes. 2020. DOI: 10.22184/1992-4178.2020.200.9.110.116 (in Russian).
  13. Vovk I.A., Baranov A.V., Leonov M.Yu., Ruhlenko I.D. Fizika poluprovodnikovyh nanokristallov. SPb.: Universitet ITMO. 2021 (in Russian).
  14. Gricienko A.V., Pugachev M.V., Avramchikov M.O. i dr. Istochniki odinochnyh fotonov vnutri puzyr'kov na gomo-interfejse sloev geksagonal'nogo nitrida bora. Pis'ma v Zhurnal eksperimental'noj i teoreticheskoj fiziki. 2024. T. 119. № 11–12. S. 802–809. DOI 10.31857/S1234567824110053 (in Russian).
  15. Zavestovskaya I.N. Lazernoe nanostrukturirovanie poverhnosti materialov. Kvantovaya elektronika. 2010. T. 40. № 11 (in Russian).
  16. Kondrashin A.A. Lyamin A.N., Savkin A.V. Osnovnye harakteristiki femtosekundnyh lazerov i ih primenenie v proizvodstve elektronnyh sredstv. Telekommunikacii. 2023. № 1. S. 30–40. DOI 10.31044/1684-2588-2023-0-1-30-40 (in Russian).
  17. Krishtop V.G. Istochniki odinochnyh fotonov. Obzor. Chast' 2. Fotonika. 2024. T. 18. № 8. S. 610–620. DOI 10.22184/1993-7296.FROS.2024.18.8.610.620 (in Russian).
  18. Kuznecov P.S. Voprosy i perspektivy razvitiya mekhatroniki i mikrosistemnoj tekhniki. Nano- i mikrosistemnaya tekhnika. 2024. T. 26. № 4. S. 159–169. DOI 10.17587/nmst.25.159-169 (in Russian).
  19. Vasin V.A., Ivashov E.N., Kuznecov P.S., Stepanchikov S.V. Sozdanie sverhchistoj vakuumnoj tekhnologicheskoj sredy v elektronnom proizvodstve. Prikladnaya fizika. 2010. № 5. S. 122–126 (in Russian).
  20. Maksimov M.V., Shernyakov Yu.M., Gordeev N.Yu. i dr. Kodirovanie informacii s ispol'zovaniem dvuhurovnevoj generacii v lazere na kvantovyh tochkah. Pis'ma v Zhurnal tekhnicheskoj fiziki. 2023. T. 49. № 5. S. 18–21. DOI 10.21883/PJTF.2023.05.54664.19450 (in Russian).
  21. Razm-Pa M., Emami F. Vliyanie izmeneniya parametrov na staticheskoe i dinamicheskoe povedenie lazera na kvantovyh tochkah, obrazovannyh samosborkoj atomov, pri modelirovanii urovnya skhemy. Kvantovaya elektronika. 2015. T. 45. № 1. S. 15–22 (in Russian).
  22. Rempel' A.A., Ovchinnikov O.V., Vajnshtejn I.A. i dr. Kvantovye tochki: sovremennye metody sinteza i opticheskie svojstva. Uspekhi himii. 2024. T. 93. № 4. S. RCR5114. DOI 10.59761/RCR5114 (in Russian).
  23. Savost'yanov A.O., Eremchev I.Yu., Naumov A.V. Lyuminescentnaya nanotermometriya s odinochnymi organicheskimi molekulami: vliyanie elektron-fononnogo vzaimodejstviya. Fotonika. 2023. T. 17. № 7. S. 508–515. DOI 10.22184/1993-7296.FRos.2023.17.7.508. 514 (in Russian).
  24. Svit K.A., Zhuravlev K.S. Lyuminescentnye svojstva nanokristallov CdxZn1-xS, sformirovannyh v matrice plenki Lengmyura-Blodzhett. Prikladnaya fotonika. 2023. T. 10. № 8. S. 29–43 (in Russian).
  25. Sinel'nikov A.O., Zapotyl'ko N.R., Zubarev Ya.A., Katkov A.A. Osobennosti primeneniya sitalla SO-115M pri izgotovlenii opticheskih detalej kol'cevyh He-Ne-lazerov. Steklo i keramika. 2023. T. 96. № 5(1145). S. 3–13. DOI 10.14489/glc.2023.05.pp.003-013 (in Russian).
  26. Fedorov A.K. Kvantovye tekhnologii: ot nauchnyh otkrytij k novym prilozheniyam. MQCT LLC, 2019. DOI: 10.22184/1993-7296.FRos.2019.13.6.574.583 (in Russian).
Date of receipt: 24.01.2024
Approved after review: 07.02.2024
Accepted for publication: 04.03.2024