350 rub
Journal Nanotechnology : the development , application - XXI Century №2 for 2025 г.
Article in number:
Nanotechnology and quantum dots: prospects in optoelectronics and sensing devices
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202502-03
UDC: 620.3
Authors:

A.O. Sinelnikov1, P.S. Kuznetsov2, A.A. Kuznetsova3

1,3 Patrice Lumumba Peoples' Friendship University of Russia (Moscow, Russia)
2 JSC GosNIIP (Moscow, Russia)
1 sinelnikov-ao@pfur.ru, 2 ps_kuznetsov@mail.ru, 3 aniakuzneczova@yandex.ru

Abstract:

Problem Statement: Modern achievements in nanotechnology are directly dependent on the development of nanoelectronics, which finds applications in various fields of science and technology, including the creation of new devices for the space industry. The unique properties of nanostructures and the modern technologies for their production are essential for the development of optoelectronic and nanoelectronic devices, as well as for information storage and transmission technologies over long distances. Semiconductor lasers based on quantum dots are becoming key components for optical data transmission and spectroscopy, which is critically important for enhancing the efficiency of spacecraft. Laser ablation injection methods allow for the creation of multilayer structures with minimal layer thickness, significantly improving the characteristics of dielectric mirrors and increasing the sensitivity of ring laser gyroscopes. Quantum dots find wide application in the development of highly sensitive sensors capable of detecting changes in electric fields, temperature, and the composition of gas mixtures.

Objective: to investigate the properties of quantum dots as objects used in sensors, with a focus on the influence of various synthesis and processing methods on parameters that significantly alter the efficiency and stability of devices.

Results: The analysis of the influence of size and shape of quantum dots on their optical properties, including bandgap width and photoluminescent characteristics, as well as the assessment of the impact of quantum dots on their structural and functional characteristics, provides a clear understanding of the application of nanoobjects in modern optoelectronic devices. This contributes to the creation of more efficient and high-performance technologies.

Practical Significance: This work can be useful not only for further study of the topic of nanoscale objects but also serves as a valuable source of information and conclusions for independent analysis. The collected data may serve as a foundation for other scientific research in this field. The integration of nanostructures into nanoelectromechanical systems opens up new opportunities for creating highly accurate sensors and actuators for onboard systems of small spacecraft.

Pages: 29-37
For citation

Sinelnikov A.O., Kuznetsov P.S., Kuznetsova A.A. Nanotechnology and quantum dots: prospects in optoelectronics and sensing devices. Nanotechnology: development and applications – XXI century. 2025. V. 17. № 2. P. 29–37. DOI: https://doi.org/10.18127/ j22250980-202502-03 (in Russian)

References
  1. Aleksandrova O.A. Nanochasticy, nanosistemy i ih primenenie. Pod red. V.A. Moshnikova, O.A. Aleksandrovoj. CHast' 1. Ufa: OOO «Aeterna». 2015. 236 s. (in Russian).
  2. Ahmedzhanov R.A., Gushchin L.A., Zelenskij I.V. i dr.  Ispol'zovanie polikristallicheskih almazov dlya magnitometrii na osnove vzaimodejstviya neekvivalentno orientirovannyh grupp NV-centrov. Kvantovaya elektronika. 2018. T. 48. № 10. S. 912–915 (in Russian).
  3. Baloyan B.M., Kolmakov A.G., Alymov M.I., Krotov A.M. Nanomaterialy. Klassifikaciya, osobennosti svojstv, primenenie i tekhnologii polucheniya; Ucheb. posobie. 2007. 125 s. (in Russian).
  4. Golovin Yu.I. Vvedenie v nanotekhnologiyu. M.: Mashinostroenie-1. 2003 (in Russian).
  5. Zavestovskaya I.N. Lazernoe nanostrukturirovanie poverhnosti materialov. Kvantovaya elektronika. 2010. T. 40. № 11. S. 942–954 (in Russian).
  6. Ivanova V.S. Vvedenie v mezhdisciplinarnoe nanomaterialovedenie. M.: Sajns-Press. 2005. 208 s. (in Russian).
  7. Kuznecov P.S. Voprosy i perspektivy razvitiya mekhatroniki i mikrosistemnoj tekhniki. Nano- i mikrosistemnaya tekhnika. 2024. T. 26. № 4. S. 159–169. DOI: https://doi.org/10.17587/nmst.25.159-169 (in Russian).
  8. Olejnikov V.A. Kvantovye tochki v biologii i medicine. Priroda. 2010. № 3(1135). S. 22–28 (in Russian).
  9. Olejnikov V.A., Suhanova A.V., Nabiev I.R.  Flurescentnye poluprovodnikovye nanokristally v biologii i medicine. Rossijskie nanotekhnologii. 2007. T. 2. № 1–2. S. 160–173 (in Russian).
  10. Patent na poleznuyu model' № 104509 U1 (RF), MPK B28B 1/29, B28B 5/00, B28B 19/00. Ustrojstvo dlya formirovaniya nanodorozhek. E.N. Ivashov, M.Yu. Korpachev, P.S. Kostomarov i dr. 2011 (in Russian).
  11. Patent na poleznuyu model' № 68181 U1 (RF), MPK H01J 37/28. Ustrojstvo formirovaniya kvantovyh tochek na podlozhke. E.N. Ivashov, A.O. Sinel'nikov. 2007 (in Russian).
  12. Pyachin S.A., Pugachevskij M.A., Pagubko A.B. Novye tekhnologii polucheniya funkcional'nyh nanomaterialov: lazernaya ablyaciya, elektroiskrovoe vozdejstvie. Habarovsk: Tihookeanskij gosudarstvennyj universitet. 2014. 75 s. (in Russian).
  13. Sinel'nikov A.O., Tihmenev N.V., Ushanov A.A., Medvedev V.M. Sovremennoe sostoyanie i tendencii razvitiya inercial'nyh navigacionnyh sistem na kol'cevyh lazernyh giroskopah. Fotonika. 2024. T. 18. № 6. S. 450–466. DOI 10.22184/1993-7296.FRos.2024.18.6.450.466 (in Russian).
  14. A Quantum-Based Microwave Magnetic Field Sensor. DOI: 10.3390/s18103288.
  15. Ali Mirzaei, Zoheir Kordrostami, Mehrdad Shahbaz, Jin-Young Kim, Hyoun Woo Kim, Sang Sub Kim Resistive-Based Gas Sensors Using quantum dots: a review. Sensors, 2022.
  16. Rakovich A., Sukhanova A., Bouchonville N., Lukashev E., Oleinikov V. et. al. Resonance Energy Transfer Improves the Biological Function of Bacteriorhodopsin within a Hybrid Material Built from Purple Membranes and Semiconductor Quantum Dots. Nano Lett. 2010.
  17. An ultrafast quantum thermometer from graphene quantum dots. DOI: 10.1039/c8na00361k.
  18. Barcikowski S., Devesa F., Moldenhauer K. Impact and structure of literature on nanoparticle generation by laser ablation in liquids. Journal of Nanoparticle Research. 2009. V. 11. P. 1883–1893.
  19. Bäuerle D. Laser chemical processing: an overview to the 30th anniversary. Applied Physics A. 2010. V. 101. P.. 447–459.
  20. Chichkov B.N., Momma C., Nolte S., Alvensleben F., Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A Materials Science & Processing. 1996. V. 63(2). P. 109–115. doi:10.1007/bf01567637.
  21. Wolf F., Schmidt P.O. Quantum sensing of oscillating electric felds with trapped ions. Measurement: Sensors 18 (2021) 100271. DOI: 10.1016/j.measen.2021.100271.
  22. High stability temperature sensors by CdTe quantum dots encapsulated in SiO2/PVA hybrids for bearing rotating elements. DOI: 10.1016/j.mtcomm.2023.105456.
  23. Hochella Jr., M.F., Spencer M.G., Jones K.L. Nanotechnology: nature’s gift or scientists’ brainchild? Environmental Science: Nano. 2015. V. 2. P. 114–119. DOI: 10.1039/C4EN00145A.
  24. Nabiev Igor, Mitchell Siobhan, Davies Anthony, Williams Yvonne, Kelleher Dermot et. al. Nonfunctionalized Nanocrystals Can Exploit a Cell's Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments. Nano Lett. 2007.
  25. Park J.Y., Kwak Y., Lim H.-R., Park S.-W., Lim M.S., Cho H.-B., Myung N.V., Choa Y.-H. Tuning the sensing responses towards room-temperature hypersensitive methanol gas sensor using exfoliated graphene-enhanced ZnO quantum dot nanostructures. Journal of Hazardous Materials 438 (2022) 129412. DOI: 10.1016/j.jhazmat.2022.129412.
  26. Kabashin A.V. Laser ablation-based methods for nanostructuring of materials. Laser physics. 2009. V. 19. P. 1136–1141.
  27. Birchall L., Foerster A., Rance G.A., Terry A., Wildman R.D., Tuck C.J. An inkjet-printable fluorescent thermal sensor based on CdSe/ZnS quantum dots immobilised in a silicone matrix. Sensors & Actuators: A. Physical. 2022. V. 347. P. 113977. DOI: 10.1016/j.sna.2022.113977.
  28. Magnetic edge states and coherent manipulation of graphene nanoribbons. DOI: 10.1038/s41586-018-0154-7.
  29. Mingyong Han, Xiaohu Gao, Jack Z. Su. Shuming Nie Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol. 2001.
  30. Rydberg atom-based sensors for radio-frequency electric feld metrology, sensing, and communications. Measurement: Sensors. 2021. V. 18. P. 100273. DOI: 10.1016/j.measen.2021.100273.
  31. Semaltianos N.G. Nanoparticles by laser ablation. Critical reviews in solid state and materials sciences. 2010. V. 35. № 2. P. 105–124.
  32. Sharma V.K., Filip J., Zboril R., Varma R.S. Natural inorganic nanoparticles – formation, fate and toxicity in the environment. Chemical Society Reviews. 2015. V. 44. P. 8410–8423 DOI: 10.1039/C5CS00236B.
  33. Sukhanova A., Venteo L., Devy J., Artemyev M., Oleinikov V. et. al. Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections. Lab Invest. 2002. DOI: 10.1097/01.LAB. 0000027837.13582.
  34. Yang G.W. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Progress in Materials Science. 2007. V. 52. № 4. P. 648–698.
Date of receipt: 24.01.2024
Approved after review: 07.02.2024
Accepted for publication: 04.03.2024