Qi Han1, S.V. Ivanov2, A.V. Smorodinov3, N.A. Vetrova4, A.G. Gudkov5
1,3,4 RUDN University (Moscow, Russia)
2 Lomonosov Moscow State University (Moscow, Russia)
2 State Budgetary Healthcare Institution CDC No. 4 (Moscow, Russia)
3,5 Bauman Moscow State Technical University (Moscow, Russia)
5 CEO LLC NPIF GIPERION (Moscow, Russia)
1 hanqieric@126.com, 2 ivanov-stepa@yandex.ru, 3 a030720182057@gmail.com, 4 vetrova@bmstu.ru, 5 profgudkov@gmail.com
Problem Statement: Modern methods of medical diagnostics require constant improvement to achieve high sensitivity and specificity. Traditional diagnostic methods may be limited in their ability to detect low concentrations of viruses or differentiate between different strains. In light of this, there is a need to develop and implement new technologies capable of significantly improving the effectiveness of detecting viral infections and other pathological conditions. Thus, there is a demand for innovative approaches that combine opportunity of modern biotechnology, including CRISPR technology, and nanotechnology, to develop more effective methods of medical diagnostics.
Objective: To analyze the application of CRISPR technology and nanotechnology in the field of medical diagnostics with an emphasis on their potential to enhance the sensitivity and specificity of viral infection detection methods.
Results: Within the scope of the research on the application of CRISPR technology and nanotechnology in medical diagnostics, an innovative platform has been developed, combining the advantages of both technologies. Experiments demonstrated successful signal amplification for virus detection, nucleic acid amplification, and integrated microfluidic systems for more precise and rapid diagnostics. The use of nanomaterials such as gold and silver in the development of biosensors has led to high sensitivity to influenza viruses and SARS-CoV-2. These innovative methods have tremendous potential in medicine and provide new opportunities for more effective control and combat of infectious diseases.
Practical Significance: The results and developed methods can be successfully applied in the field of medical diagnostics. The creation of an integrated platform that combines CRISPR technology and nanotechnology provides unique opportunities for more accurate and rapid detection of viral infections, including influenza and SARS-CoV-2. The use of nanomaterials, such as gold and silver, in the development of biosensors improves the sensitivity and specificity of diagnostic methods. This is crucial for early detection of infections, especially in epidemic and pandemic conditions. These technologies will enable the monitoring and prevention of the spread of viral diseases, which holds high practical significance for healthcare and society as a whole.
Qi Han, Ivanov S.V., Smorodinov A.V., Vetrova N.A., Gudkov A.G. CRISPR and nanotechnology solutions for diagnostic purposes in medical practice. Nanotechnology: development and applications – XXI century. 2023. V. 15. № 4. P. 30–46. DOI: https://doi.org/10.18127/j22250980-202304-04 (in Russian)
- Korobkina E.A., Knyazeva M.S., Kil` Yu.V. Sravnitel`ny`j analiz metodov detekcii mikroRNK s pomoshh`yu metoda obratnoj transkripcii i kolichestvennoj polimeraznoj cepnoj reakcii (OT-PCzR). Klinicheskaya laboratornaya diagnostika. 2018. T. 63. № 11. S. 722–728. DOI 10.18821/0869-2084-2018-63-11-722-728. – EDN YUGSTZ.
- Kellner M.Dzh., Koob Dzh.G., Gutenberg Dzh.S., Abudaje O.O., Chzhan F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019 okt.; № 14(10). S. 2986–3012. DOI: 10.1038/s41596-019-0210-2. Epub sen 2019. Erratum in: Nat Protoc. 2020 mar; 15(3): 1311.
- Chen Dzh.S., Ma E`., Xarrington L.B., Da Kosta M., Tyan` S., Palefski Dzh.M., Daudna Dzh.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018 apr 27; № 360(6387). S. 436–439. DOI: 10.1126/SCIENCE.AAR6245. Epub 2018 fev 15. Erratum in: Science.
- Tanimoto I., Mori A., Miyamoto S., Ito E`., Arikava K., Ivamoto T. Comparison of RT-PCR, RT-LAMP, and Antigen Quantification Assays for the Detection of SARS-CoV-2. Jpn J Infect Dis. 2022 maj 24; № 75(3). S. 249–253. DOI: 10.7883/YOKEN.JJID.2021.476. Epub 2021 sen 30. PMID: 34588370.
- Van Zh., Van Zh., Li R., Lyu L., Yuan` U. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification. BMC Vet Res. 2017 avg 15; № 13(1). S. 241. DOI: 10.1186/S12917-017-1180-7.
- Chzhang U., Pan Cz., Li F., Chzhu M., Su G. Reverse Transcription Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a for Facile and Highly Sensitive Colorimetric SARS-CoV-2 Detection. Anal Chem. 2021 Mar 2; № 93(8). P. 4126–4133. DOI: 10.1021/acs.analchem
- Kang Dzh., Taxir A., Van X., Chang Dzh. Applications of nanotechnology in virus detection, tracking, and infection mechanisms. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 iyul`; 13(4): e1700. DOI: 10.1002/WNAN.1700. Epub 2021 yanv 28.
- Dessale M., Mengistu G., Mengist X.M. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine. 2022 avg 26; № 17. S. 3735–3749. DOI: 10.2147/IJN.S378074
- Xatchinson E.S. Influenza Virus. Trends Microbiol. 2018 sen; № 26(9). S. 809–810. DOI: 10.1016/J.TIM.2018.05.013
- Lou M. Influenza virus entry. Adv Exp Med Biol. 2012; 726: 201–21. DOI: 10.1007/978-1-4614-0980-9_9
- Faruki T., Malik Dzh.A., Mulla A.X., Al` Xagbani T., Al`mansur K., Ubajd M.A., Al`gamdi S., Anvar S. An overview of SARS-COV-2 epidemiology, mutant variants, vaccines, and management strategies. J Infect Public Health. 2021 okt; № 14(10). S. 1299–1312. DOI: 10.1016/J.JIPH
- Vel`boj T.S, Litvina L.A. Virus grippa – sovremennaya opasnost` dlya cheloveka. Problemy` biologii, zootexnii i biotexnologii: Sb. tr. nauchno-prakt. konf. nauch. ob-va studentov i aspirantov biologo-texnolog. fakul`teta. Novosibirsk, 10–14 dekabrya 2018 g. Novosibirsk: Izdatel`skij centr NGAU «Zolotoj kolos». 2019. S. 159–164. EDN YVDZDV.
- Xu B., Guo X., Chzhou P., Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021 mar; № 19(3). S. 141–154. DOI: 10.1038/S41579-020-00459-7. Epub 2020 okt 6. Erratum in: Nat Rev Microbiol.
- Terner S.A., Abu Shar R., Yang Z. The basics of commonly used molecular techniques for diagnosis, and application of molecular testing in cytology. Diagn Cytopathol. 2023 yanv; № 51(1). S. 83–94. DOI: 10.1002/DC.25067
- Xusanov X.I., Shevkoplyas L.A. Sravnitel`ny`j analiz SARS-COV-2, SARS-COV i MERS-COV. Innovacii. Nauka. Obrazovanie. 2020. № 21. S. 1597–1607. EDN YWYTNY.
- Xalikova R.A., Sadrtdinov D.A., Xalikova A.A. Sravnitel`naya xarakteristika danny`x pri vspy`shke koronavirusa SARS-COV-2 i SARS-COV // COVID-19 i Sovremennoe obshhestvo: Social`no-e`konomicheskie posledstviya i novy`e vy`zovy`: Sb. st. II Mezhdunar. nauchno-prakt. konf. Penza, 7 sentyabrya 2020 g. Penza: «Nauka i Prosveshhenie» (IP Gulyaev G.Yu.). 2020. S. 40–43. EDN NPZKBS.
- Shexab F.F. Molecular diagnostics: past, present, and future. Hum Mutat. 1993; № 2(5). S. 331–337. DOI: 10.1002/HUMU
- Greub G., Sali R., Bruje R., Zhaton KTen years of R&D and full automation in molecular diagnosis. Future Microbiol. 2016. № 11(3). S. 403–425. DOI: 10.2217/FMB.15.152
- Tendervels K., Bernard P., Danie`l` E`. Nanotechnology in Diagnosis: A Review. Advances in Nanoparticles. 2017. T. 6. № 3.
- Maksimova N.P., Anoxina V.S., Grinev V.V. i dr. Ispol`zovanie molekulyarny`x i kletochny`x texnologij dlya issledovaniya genomov u mikroorganizmov, rastenij i cheloveka. Vestnik BGU. Ser. 2: Ximiya. Biologiya. Geografiya. 2011. № 3. S. 77–90. EDN SGWHZL.
- Bajda S., Adil` M., Tuchchinardi T., Kordani M., Riczczolio F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules. 2019 dek 27. № 25(1). S. 112. DOI: 10.3390/MOLECULES25010112
- Abid Xalim, Moxd Dzhavejd, Ravi Pratap Singx, Shanaj Rab, Radzhiv Suman. Applications of nanotechnology in medical field: a brief review. Global Health Journal. 2023. DOI: 10.1016/J.GLOHJ.2023.02.008
- Chzhou X., Czou Dzh.X., Chintalapalli M., Lyu X., Czzyan F. Detection and Differentiation of SARS-CoV-2, Influenza, and Respiratory Syncytial Viruses by CRISPR. Diagnostics (Basel). 2021 maya 1. № 11(5). S. 823. DOI: 10.3390/DIAGNOSTICS11050823
- Dzidziguri E`.L., Sidorova E.N., Dzidziguri E`.L., Sidorova E.N. Processy` polucheniya nanochasticz i nanomaterialov. Nanotexnologii: uchebnoe posobie. M.: Izdatel`skij dom MISiS. 2012. 70 s.
- El`czov M.Yu. RPA- i RPA/Kutel`cza v yadrax, sformirovanny`x v sisteme in vitro Xenopus laevis. Avtoreferat diss. … na soiskanie uchenoj stepeni kandidata biologicheskix nauk. SPb., 2004. 29 s.
- Siong D., Daj U., Gong Dzh., Li G., Lyu N., U U., Pan Dzh., Chen Cz., Czzyao I., Deng X., Ie Dzh., Chzhang I., Xuang X., Li K.,
Syue` L., Chzhang I., Tan G. Rapid detection of SARS-CoV-2 with CRISPR-Cas12a. PLoS Biol. 2020 dek 15. № 18(12). DOI: 10.1371/JOURNAL - Lyu Sh., Li Ya., Uang Dzh., Song Yu., U L., Yu B., Ma Sh., Ma P., Lyu Ya., Xuang I., Uang Sh. Rapid and Specific Detection of Active SARS-CoV-2 With CRISPR/Cas12a. Front Microbiol. 2022 yanv 28. № 12. DOI: 10.3389/FMICB.2022.820698
- Sun I., Lyu I., Lyu Ch., Ie S., Chen V., Li D., Xuang U. One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a. J Transl Med. 2021 fev 16. № 19(1). DOI: 10.1186/S12967-021-02741-5
- Ding I., In K., Li Z., Lalla R.V., Ballesteros E., Sfeir M.M., Lyu Ch. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat Commun. 2020 sen 18. № 11(1). DOI: 10.1038/S41467-020-18575-6
- Aman R., Marsich T., Sivakrishna Rao G., Maxas A., Ali Z., Al`sanea M., Al`-Kaxtani A., Al`xamlan F., Maxfuz M. iSCAN-V2: A One-Pot RT-RPA-CRISPR/Cas12b Assay for Point-of-Care SARS-CoV-2 Detection. Front Bioeng Biotechnol. 2022 yanv 21; № 9. DOI: 10.3389/FBIOE.2022.800104
- Park B.Dzh., Park M.S., Li Dzh.M., Song I.Dzh. Specific Detection of Influenza A and B Viruses by CRISPR-Cas12a-Based Assay. Biosensors (Basel). 2021 mar 19; № 11 (3). DOI: 10.3390/BIOS11030088
- Garsiya-Venzor A., Rue`da-Zarazua B., Markes-Garsiya E`., Mal`donado V., Monkada-Morales A., Olivera X., Lopes I., Zun`iga X., Melendes-Zaxgla X. SARS-CoV-2 Direct Detection Without RNA Isolation With Loop-Mediated Isothermal Amplification (LAMP) and CRISPR-Cas12. Front Med (Lausanne).
- Chzhan T., Chzhao V., Che`n` Sh. i dr. Fully automated CRISPR-LAMP platform for SARS-CoV-2 Delta and Omicron variants. Analiticheskaya ximiya. 2022. T. 94. Vy`p. 44. S. 15472–15480.
- Ali Z., Aman R., Maxas A., Rao G.S., Texsin M., Marsich T., Salunke R., Subudi Ak, Xala S.M., Xamdan S.M., Pejn A., Alofi F.S., Alsomali A., Xashem A.M., Xogir A., Almontashiri NAM, Abedaltagafi M., Xasan N., Maxfuz M. iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res.2020 Oct 15; №288:198129. DOI: 10.1016/j.virusres.2020.198129
- Van R., Czyan` S., Pan Ya., Li M., Yang Ya., Ma X., Chzhao M., Czyan` F., Yu X., Lyu Chzh., Ni T., Chzhe`n I., Uang I. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection. Biosens Bioelectron. 2021 Jan 15; № 172:112766. DOI: 10.1016/j.bios.2020.112766
- Che`n I., Shi I., Che`n I., Yang Z., U X., Chzhou Z., Li Cz., Ping Cz., Xe` L., She`n` X., Che`n` Cz., U Cz., Yu Ya., Chzhan I., Che`n` X. Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: A promising method in the point-of-care detection. Biosens Bioelectron. 2020 Dec 1; № 169:112642. DOI: 10.1016/j.bios
- U L., Uang I., U V., Syu I., Lyu I., Czao I., Tang I., Xuang T., Xuang I. MnO2 Nanozyme-Mediated CRISPR-Cas12a System for the Detection of SARS-CoV-2. ACS Appl Mater Interfaces. 2022 Nov 16; № 14 (45). P. 50534–50542. DOI: 10.1021/acsami.2c14497
- Tang D., Chzhang Ch., Tan V., Long F., Sun Zh., Li I., Zou S., Yang I., Czaj K., Li S., Vang Z., Lyu I., Mao G., Ma Ya., Zhao GP., Tyan` G., Zhao V. RT-RPA-Cas12a-based assay facilitates the discrimination of SARS-CoV-2 variants of concern. Sens Actuators B Chem. 2023 Apr 15; № 381:133433. DOI: 10.1016/j.snb.2023.133433
- Chzhan Ya., Chen M., Lyu I., Chzhen Cz., Luo S., Syue` I., Lyan Cz., Chzhou L., Tao I., Li M., Vang D., Chzhou Zh., Vang D. Sensitive and rapid on-site detection of SARS-CoV-2 using a gold nanoparticle-based high-throughput platform coupled with CRISPR/Cas12-assisted RT-LAMP. Sens Actuators B Chem. 2021 Oct 15; № 345:130411. DOI: 10.1016/j.snb.2021.130411. Epub 2021 Jul 6
- Czao I., U Czzin`, Pang B., Chzhan X., Le X.S. CRISPR/Cas12a-mediated gold nanoparticle aggregation for colorimetric detection of SARS-CoV-2. Chem Commun (Camb). 2021 Jul 13; № 57 (56). P. 6871-6874. DOI: 10.1039/d1cc02546e
- Lyu L., Syu Chzh., Avajda K., Dolleri S.Dzh., Bao M., Fan Zh., Korm`e D., O'Konnell M., Tobin Dzh., Dyu K. Gold nanoparticle-labeled CRISPR-Cas13a assay for sensitive molecular counting in solid-state nanopores. Adv Mater Technol. 2022 Mar;№ 7 (3):2101550. DOI: 10.1002/admt.202101550
- Lyu Sh., Si T., Pe`j S., Li S., Xe` I., Tong I., Lyu G. CRISPR-Cas12a in combination with universal gold nanorod-mediated display probes for rapid and sensitive visual detection of SARS-CoV-2. Sens Actuators B Chem. 2023 Feb 15;377:133009. DOI: 10.1016/j.snb.2022.133009. Epub 2022 Nov 22
- Li Dzh., O B., Chxoi Dzh. Development of a HIV-1 Virus Detection System Based on Nanotechnology. Sensors (Basel). 2015 Apr 27; №15 (5). P. 9915–27. DOI: 10.3390/s150509915
- Mozgxani S.X., Kermani X.A., Noruzi M., Arabi M., Soltani S. Nanotechnology based strategies for HIV-1 and HTLV-1 retroviruses gene detection. Heliyon. 2020 May 27; № 6 (5) e04048. DOI: 10.1016/j.heliyon.2020.e04048
- Duan L., Van Ya., Li S.S., Van Z., Zhaj Zh. Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method. BMC Infect Dis. 2005 Jul 6; № 5. S. 53. DOI: 10.1186/1471-2334-5-53
- Negaxdari B., Darvishi M., Saidi A.A. Gold nanoparticles and hepatitis B virus. Artif Cells Nanomed Biotechnol. 2019 Dec; №47 (1). S. 455–461. DOI: 10.1080/21691401.2018.1553786. PMID: 30836779
- Shouki S.M., Bal`d D., Azzazi X.M. Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clin Biochem. 2010 Sep; № 43(13–14). S. 1163-8. DOI: 10.1016/j.clinbiochem.2010.07.001. Epub 2010 Aug 1
- Chzhang B., Pinski B.A., Ananta Dzh.S., Chzhao S., Arulkumar S., Uan X., Saxu M.K., Abejnajake Dzh., Ue`ggoner Dzh.Dzh., Xops K., Tang M., Daj X. Diagnosis of Zika virus infection on a nanotechnology platform. Nat Med. 2017 maj; tom 23 (5). S. 548–550. DOI: 10.1038/nm.4302
- Virijachajporn N., Sirikaev S., Bamrungsap S., Limcharoen T., Polkankosit P., Ruksrangruang P., Ponlamuandi K. A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening. Anal Methods. 2021 apr 14; tom 13 (14). S. 1687–1694. DOI: 10.1039/d0ay01988g
- Xung L.I., Xuang T.B., Czaj Ya.Cz., E ChS, Lej X.I., Li G.B. A microfluidic immunomagnetic bead-based system for the rapid detection of influenza infections: from purified virus particles to clinical specimens. Biomed Microdevices. 2013 iyun`; T. 15(3). S. 539–551. DOI: 10.1007/s10544-013-9753-0
- Puntil V., Nagesh P.T., Xusejn M., Golovko V.B., Fe`rbe`nks A.Dzh. Gold Nanoparticles Decorated with Sialic Acid Terminated
Bi-antennary N-Glycans for the Detection of Influenza Virus at Nanomolar Concentrations. ChemistryOpen. 2015 iyul` 14; T. 4(6).
S. 708–716. DOI: 10.1002/open.201500109 - Axmed S.R., Kim Dzh., Sudzuki T., Li Dzh., Park I.I. Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol Bioeng. 2016 oktyabr`; T. 113(10). S. 2298–2303. DOI: 10.1002/bit.25982
- Farre K., Vie`czci S., Rajt A., Robin P., Lezhal` N., Manczano M., Vidich Dzh., Shaiks S. Specific and sensitive detection of Influenza A virus using a biotin-coated nanoparticle enhanced immunomagnetic assay. Anal Bioanal Chem. 2022 yanvar`; T. 414(1). S. 265–276. DOI: 10.1007/s00216-020-03081-x
- Dzhordanashvili S., Metreveli T., Kldiashvili E. The detection of IgG class antibodies against SARS-CoV-2 nucleocapsid protein by application of nanoparticles. Eur Rev Med Pharmacol Sci. 2023 fevral`; T. 27(3). S. 1203–1206. DOI: 10.26355/eurrev_202302_31227
- Gosslen B., Retut M., Dutur R., Troian-Got`e L., Bevernazh R., E`rens S., Lefevr P., Deni O., Bryulan G., Zhaben I. Ultrastable Silver Nanoparticles for Rapid Serology Detection of Anti-SARS-CoV-2 Immunoglobulins G. Anal Chem. 2022 maj 24; T. 94(20): 7383-7390. DOI: 10.1021/acs.analchem.2c00870
- Lyang P., Guo K., Chzhao T., Ue`n S., Tyan` Chzh., Shan Ya., Sing Ya., Czze`n Ya. Ag Nanoparticles with Ultrathin Au Shell-Based Lateral Flow Immunoassay for Colorimetric and SERS Dual-Mode Detection of SARS-CoV-2 IgG. Anal Chem. 2022 iyun` 14; T. 94(23): 8466–8473. DOI: 10.1021/acs.analchem.2c01286
- Imani Geshlagchai, S. Madani, Golchinfar. Development of a Nano-ELISA system for the rapid and sensitive detection of H9N2 avian influenza.
- Van M., Fu A., Xu B., Tong I., Lyu R., Lyu Ch., Gu Dzh., Syan B., Lyu Chzh., Czzyang U., Shen G., Chzhao U., Me`n D., De`ng Z.,
Yu L., Ve`j U., Li I., Lyu T. Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS-CoV-2 and Other Respiratory Viruses. Small. 2020 Aug; № 16(32):e2002169. DOI: 10.1002/smll.202002169 - Lee J.-H., Oh B.-K., Choi J.-W. Development of a HIV-1 Virus Detection System Based on Nanotechnology. Sensors. 2015. 15. 9915–9927. DOI: 10.3390/s150509915
- Hussein H.A., Hanora A., Solyman S.M. et al. Designing and fabrication of electrochemical nano-biosensor for the fast detection of SARS-CoV-2-RNA. Sci Rep. 2023 Mar 29; № 13(1):5139. DOI: 10.1038/s41598-023-32168-5
- Yudum Tepeli Büyüksünetçi, Ülkü Anık. Electro-Nano Diagnostic Platform Based on Antibody-Antigen Interaction: An Electrochemical Immunosensor for Influenza A Virus Detection. Biosensors, 2023, № 13(2). C. 176.