350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2022 г.
Article in number:
Integrated design of monolithic integrated circuits of microwave modules
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202201-05
UDC: 621.382
Authors:

S.V., Chizhikov1, A.G. Gudkov2, V.V. Popov3, Yu.V. Solov’ev4

1,2 Bauman Moscow State Technical University (Moscow, Russia)
3, 4 Svetlana-Elektronpribor JSC (St. Petersburg, Russia)

Abstract:

In connection with the further development of radio electronic facilities, developers have imposed strict requirements on modules and set a set of tasks to radically improve the parameters and characteristics of HIC and MIC of various classes and fields of application.

Traditionally, the task of ensuring high requirements for the parameters of products is solved by tightening the requirements for the accuracy of the technological process of their production and the introduction of tuning and adjustment work, selective assembly. The consequence of this approach is the high complexity of manufacturing. In order to reduce the cost, they follow the path of softening the requirements for the accuracy of technological equipment, but at the same time reliability decreases due to gradual failures or there is a defect in electrical parameters caused by non-compliance of operational parameters with the technical task.

One of the promising methods of solving the problem of the relationship between quality indicators, cost and probability of the yield of suitable high-tech products is an integrated approach to their creation, covering various stages of their design, production and operation and ensuring the fulfillment of the task due to technological support at all stages of the product life cycle. The stages of the development of microwave modules with the application and description of the proposed integrated approach to the design of microwave MIC products and joint consideration of circuit engineering, design, technological, innovative and economic issues at all stages of the product life cycle are considered. The developed microwave MIC products are presented using the proposed method of complex technological optimization.

The proposed approach makes it relevant to create its own initial scientific base and identify ways to implement the complex problem posed, primarily due to the technological support of microwave MIS at all stages of their life cycle.

The work was carried out with the financial support of the Russian Foundation for basic research (RFBR) as part of the scientific project No. 20-37-90124 dated 24.08.2020 “Identification and research of key elements of medical radiothermometers in a monolithic integrated design that meet the high requirements for sensitivity, accuracy, broadband, noise immunity”.

Pages: 40-51
For citation

Chizhikov S.V., Gudkov A.G., Popov V.V., Solov’ev Yu.V. Integrated design of monolithic integrated circuits of microwave modules. Nanotechnology: development and applications – XXI century. 2022 V. 14. № 1. P. 40–51. DOI: https://doi.org/10.18127/j22250980-202201-05 (in Russian)

References
  1. Rebrov S.I., Gel'vich E.A. Ob osnovnyh napravleniyah razrabotok v SVCh priborostroenii. Doklad na mezhvedomstvennom soveshchanii glavnyh konstruktorov MEP i MRP SSSR. Zelenograd, 1975 (in Russian).
  2. Gel'vich E.A. O sootnoshenii parametrov funkcional'no svyazannyh priborov pri ih selektivnoj stykovke. Elektronnaya tekhnika. Ser. Elektronika SVCh. 1980. Vyp. 10 (322) (in Russian).
  3. Murkov V.I. Sostoyanie i perspektiva mirovogo rynka radioelektronnoj tekhniki. Radioelektronika i upravlenie. 2002. Vyp.7–9. S. 21–26 (in Russian).
  4. Alferov Zh.I. Poluprovodnikovaya elektronika v Rossii. Sostoyanie i perspektiva razvitiya. Elektronika. Nauka, tekhnologiya, biznes. 2004. № 5. S. 88–92 (in Russian).
  5. Bushminskij I.P., Kuznecov D.I., Romanov A.A., Tyuhtin M.F. Priemnye sistemy sputnikovogo televideniya. M.: Izd-vo MGTU im. N.E. Baumana. 2002. 320 s. (in Russian)
  6. Rebrov S.I. Prioritetnye napravleniya razvitiya elektronnoj SVCh-tekhniki. Elektronnaya promyshlennost'. 2003. Vyp.1. S. 3–12 (in Russian).
  7. Verba V.S., Gandurin V.A., Trofimov A.A. Bortovaya RLS dlya perspektivnogo mnogofunkcional'nogo aviacionnogo kompleksa razvedki, opoveshcheniya i upravleniya (MAK ROU) s cifrovoj AFAR. Naukoemkie tekhnologii. 2004. T. 5. № 8–9. S. 110–116 (in Russian).
  8. Silkin A.T., Chernyshev M.I., Yakushevskij G.D. i dr. Perspektiva primeneniya sistem na kristalle v radiolokacionnyh kompleksah. Naukoemkie tekhnologii. 2004. Vyp. 8–9. S.60–65 (in Russian).
  9. Gel'vich E.A., Kotov A.S. Kompleksirovannye izdeliya SVCh: osnovnye osobennosti i tendencii razvitiya. Radiotekhnika. 2004. Vyp. 2.
    S. 4–16 (in Russian).
  10. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. Kn. 1. Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2012. 212 s. (in Russian)
  11. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. Kn. 2. Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2013. 214 s. (in Russian)
  12. Agasieva S.V., Gudkov A.G., Tihomirov V.G. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. Kn. 3. Pod red. V.N. V'yuginova, A.G. Gudkova i V.V. Popova. M.: OOO NTP «Virazh-Centr». 2016. 252 s. (in Russian)
  13. Gudkov A.G. Radioapparatura v usloviyah rynka. Kompleksnaya tekhnologicheskaya optimizaciya. M.: SAJNS-PRESS, 2008. 336 s. (in Russian)
  14. Abakumov N.V., Alybin V.G., Gudkov A.G. i dr. Elektronnye ustrojstva SVCh. Kn. 2. Pod red. I.V. Lebedeva. M.: Radiotekhnika. 2008. 400 s. (in Russian)
  15. Gudkov A.G., Popov V.V. Tekhnologicheskaya optimizaciya GIS i MIS diskretnyh attenyuatorov. Elektromagnitnye volny i elektronnye sistemy. 2012. T. 17. № 11. S. 42–47 (in Russian).
  16. Gudkov A.G. Monitoring optimal'nogo kachestva pri sozdanii naukoemkih vysokotekhnologichnyh izdelij. Izv. vuzov. Ser. Mashinostroenie. 2004. № 5. S. 61–70 (in Russian).
  17. Gudkov A.G. Formulirovanie principov kompleksnoj tekhnologicheskoj optimizacii. Tekhnika mashinostroeniya. 2006. № 1. S. 63–72 (in Russian).
  18. Gudkov A.G., Gorlacheva E.N. Kompleksnaya tekhnologicheskaya optimizaciya na etape serijnogo proizvodstva. Ekonomika i proizvodstvo. 2006. № 1. S. 44–48 (in Russian).
  19. Gudkov A.G., Popov V.V. Vzaimodejstvie tekhnologicheskih innovacij i tekhnologicheskoj nasledstvennosti v processe evolyucionnogo razvitiya tekhnologij. Naukoemkie tekhnologii. 2011. № 9. S. 61–69 (in Russian).
  20. Gudkov A.G., Popov V.V. Tekhnologicheskaya optimizaciya diskretnyh GIS i MIS fazovrashchatelej. Elektromagnitnye volny i elektronnye sistemy. 2012. T.17. № 12. S. 33–39 (in Russian).
  21. Bogdanov A.M., Davidovich M.V., Kac B.M. i dr. Sverhshirokopolosnye mikrovolnovye ustrojstva. Pod red. A.P. Krenickogo i V.P. Meshchanova. M.: Radio i svyaz'. 2001 (in Russian).
  22. Brejton R.K., Hetchel R.D., Sandzhovanni-Vinchentelli A.L. Obzor metod optimal'nogo proektirovaniya integral'nyh skhem. TIIER. 1981. T.69. № 10 (in Russian).
  23. Kac B.M., Meshchanov V.P., Fel'dshtejn A.L. Optimal'nyj sintez ustrojstv SVCh s T-volnami. Pod red. V.P. Meshchanova. M.: Radio i svyaz'. 1984 (in Russian).
  24. Meshchanov V.P., Tupikin V.D., Chernyshev S.L. Koaksial'nye passivnye ustrojstva. Pod obshch. red. V.P. Meshchanova. Saratov: Izd.-vo Saratovskogo un-ta. 1993 (in Russian).
  25. Meshchanov V.P., Chumaevskaya G.G. Eksperimental'no-raschetnyj metod sinteza radiotekhnicheskih ustrojstv. Radiotekhnika i elektronika. 1985. T. 30. № 3 (in Russian).
  26. Sal'nikov A.S., Karataev E.P., Dobush I.M. Programma dlya hraneniya i statisticheskogo analiza rezul'tatov izmereniya SVCh-monolitnyh integral'nyh skhem. XXI Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo’2011). Sevastopol'. 12–16 sentyabrya 2011 g.: Materialy konf. V 2 t. T.1. S. 212–213 (in Russian).
  27. Kapralova A.A., Manchenko L.V., Pashkovskij A.B. i dr. Vliyanie osobennostej sborki na harakteristiki moshchnyh tranzistornyh usilitelej. XXI Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo’2011). Sevastopol', 12–16 sentyabrya 2011 g.: Materialy konf. V 2 t. T. 1. S. 139–140 (in Russian).
  28. Bobrov I.N., Valujskij S.V. Metodika rascheta iskhodnyh dannyh dlya tekhniko-ekonomicheskoj optimizacii zemnyh stancij sputnikovoj svyazi (ZS). XXI Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo’2011). Sevastopol', 12–16 sentyabrya 2011 g.: Materialy konf. V 2 t. T. 2. S. 339–340 (in Russian).
  29. Bobrov I.N., Valujskij S.V. Tekhniko-ekonomicheskaya optimizaciya priemoperedayushchej sistemy zemnoj stancii sputnikovoj svyazi VSAT seti. XXI Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo’2011). Sevastopol', 12–16 sentyabrya 2011 g.: Materialy konf. V 2 t. T. 2. S. 341–342 (in Russian).
  30. Sal'nikov A.S., Dobush I.M., Babak L.I. i dr. Eksperimental'noe issledovanie i postroenie modelej passivnyh komponentov SVCh monolitnyh integral'nyh skhem s uchetom tekhnologicheskogo razbrosa parametrov. Doklady TUSURa-№ 2(26). Chast' 2 «Elektronika, Izmeritel'naya tekhnika, Radiotekhnika i svyaz'». Dekabr' 2012. S. 113–118 (in Russian).
  31. Sal'nikov A.S., Dobush I.M., Karatev E.P. Programmnoe obespechenie dlya hraneniya rezul'tatov izmerenij SVCh MIS i statisticheskogo analiza v sostave sistemy INDESYS-MS. Doklady TUSURa-№ 2(26). Chast' 2 «Elektronika, Izmeritel'naya tekhnika, Radiotekhnika i svyaz'». dekabr' 2012. S. 218–223 (in Russian).
  32. Gudkov A.G., Popov V.V., V'yuginov V.N., Dobrov V.A., Meshkov S.A. Geterostrukturnaya SVCh-elektronika v Rossii. Elektromagnitnye volny i elektronnye sistemy. 2012. № 1. S. 4–9 (in Russian).
  33. Gudkov A.G., Popov V.V., Leushin V.Yu., V'yuginov V.N., Korolev A.V., Plyushchev V.A., Sidorov I.A. Elektronnyj modul' mnogokanal'nogo SVCh trakta dlya sistem radiotermokartirovaniya. Elektromagnitnye volny i elektronnye sistemy. 2014. T. 19. № 1. S. 27–34 (in Russian).
  34. Popov V.V., Gudkov A.G., Biryuleva E.G., Vartanov O.S., Volkov V.V., V'yuginov V.N., Grozina M.I., Dobrov V.A., Evlampiev I.K., Zybin A.A., Ivanova V.P., Petrov P.A, Savin A.M., Shaganov P.A. Monolitnye integral'nye ustrojstva SVCh. Elektromagnitnye volny i elektronnye sistemy. 2014. T. 22. № 4. S. 45–59 (in Russian).
  35. Gudkov A.G., Popov V.V., Leushin V.Yu., Meshkov S.A. Primenenie metodov kompleksnoj tekhnologicheskoj optimizacii pri proektirovanii MIS SVCh. SVCh-tekhnika i telekommunikacionnye tekhnologii (KryMiKo’2008): Materialy XVIII Mezhdunar. Krymskoj konf. Sevastopol', 2008. Tom 2. S. 535–536 (in Russian).
  36. Gudkov A.G., Popov V.V., Leushin V.Yu., V'yuginov V.N., Dobrov V.A., Meshkov S.A. Uchet nasledstvennyh svojstv pri kompleksnoj tekhnologicheskoj optimizacii MIS SVCh. XXI Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo’2011). Sevastopol', 12–16 sentyabrya 2011 g.: Materialy konf. V 2 t. T.2. S. 709 (in Russian).
  37. Gudkov A.G. Metodologiya kompleksnoj tekhnologicheskoj optimizacii parametrov SVCh-priborov na osnove geterostruktur. Nanotekhnologii: razrabotka, primenenie. 2019. T. 11. № 2. S. 5–25 (in Russian).
  38. Gudkov A.G. Kompleksnaya tekhnologicheskaya optimizaciya medicinskoj tekhniki na vsekh etapah ee zhiznennogo cikla. Biomedicinskaya radioelektronika. 2012. № 5. S. 51–61 (in Russian).
Date of receipt: 31.01.2022
Approved after review: 07.02.2022
Accepted for publication: 18.02.2022