350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2022 г.
Article in number:
Topologically oriented approach to the choice of a method for modeling the transparency of heterostructural channels in nanoelectronic devices
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202201-04
UDC: 621.382, 538.91
Authors:

V.D. Shashurin1, N.A. Vetrova2, E.V. Kuimov3, K.P. Pchelintsev4, A.S. Aleksandrov5

1,3–5 Bauman Moscow State Technical University (Moscow, Russia)
2  Peoples' Friendship University of Russia (Moscow, Russia)

Abstract:

At the initial stages of the development of semiconductor heterostructure devices with transverse transport, the calculation of the transmission coefficient plays a special role. Due to the specific nature of the dependence of the transmission coefficient on the energy of charge carriers, the choice of a numerical method for its calculation is a difficult task. An incorrect choice of the method for calculating the tunneling transparency coefficient leads to unreasonably high time costs and, worse, to the numerical instability of the solution.

Purpose – developing a topologically oriented approach to the choice of a method for modeling the transparency of heterostructural channels of nanoelectronic devices

The results of calculations of the tunneling transparency coefficient of heterostructures by the methods of transfer matrices and Green's functions are analyzed, and the dependence of the computational characteristics of the corresponding algorithms on the number of heterojunctions is estimated. Topologically-oriented spheres of application of algorithms for calculating the coefficient of tunnel transparency are established.

Recommendations for the construction of automated computational algorithms with reduced time complexity for efficient search for the coefficient of tunneling transparency of nanoelectronic heterostructure devices with transverse transport based on semiconductor superlattices.

Pages: 31-39
For citation

Shashurin V.D., Vetrova N.A., Kuimov E.V., Pchelintsev K.P., Aleksandrov A.S. Topologically oriented approach to the choice of a method for modeling the transparency of heterostructural channels in nanoelectronic devices. Nanotechnology: development and applications – XXI century. 2022 V. 14. № 1. P. 31–39. DOI: https://doi.org/10.18127/j22250980-202201-04 (in Russian)

References
  1. Vetrova N.A., Ivanov Yu.A., Kuimov E.V., Makeev M.O., Meshkov S.A., Pchelincev K.P., Shashurin V.D. Prognozirovanie elektricheskih harakteristik geterostrukturnyh SVch-ustrojstv s poperechnym tokoperenosom na osnove kvantovo-mekhanicheskoj samosoglasovannoj modeli nanorazmernogo kanala, uchityvayushchej mezhdolinnoe rasseyanie. SVch-tekhnika i telekommunikacionnye tekhnologii. 2020. № 1–1. S. 326–327 (in Russian).
  2. Kazakov I.P., Zinov'ev S.A., Klekovkin A.V., Sazonov V.A., Kukin V.N., Borgardt N.I. Razvorot sloev GaAs v geterostrukturah GaAs/Ge/GaAs. Kratkie soobshcheniya po fizike Fizicheskogo instituta im. P.N. Lebedeva Rossijskoj Akademii Nauk. 2020. T. 47. № 12 S. 3–10 (in Russian).
  3. Agasieva S.V., Gudkov A.G., Leushin V.Yu. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVch. Kniga 1. Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2012. 212 s. (in Russian).
  4. Agasieva S.V., Gudkov A.G., Leushin V.Yu. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVch. Kniga 2. Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2013. 214 s. (in Russian).
  5. Agasieva S. V., Vetrova N. A., Gudkov A. G. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVch. Kniga 3. Pod red. V.N. V'yuginova, A.G. Gudkova i V.V. Popova. M.: OOO NTP «Virazh-Centr». 2016. 252 s. (in Russian).
  6. Medina-Bailon C., Dutta T., Adamu-Lema F., Rezaei A., Nagy D., Georgiev V., Asenov A. Nano-Electronic Simulation Software (NESS): A Novel Open-Source TCAD Simulation Environment. Journal of Microelectronic Manufacturing. 2020. V. 3. P. 20030407. DOI:10.33079/jomm.20030407
  7. Dyukov D.I., Fefelov A.G., Korotkov A.V., Pavel'ev D.G. , Kozlov V.A., Obolenskaya E.S., Ivanov A.S., Obolenskij S.V. Sravnenie effektivnosti perspektivnyh geterostrukturnyh umnozhitel'nyh diodov teragercovogo diapazona chastot. Fizika i tekhnika poluprovodnikov. 2020. T. 54. № 10. S. 1158–1162 (in Russian).
  8. Kul'chickij N.A., Naumov A.V., Starcev V.V. Fotonnye i teragercovye primeneniya kak sleduyushchij drajver rynka arsenida galliya. Izv. vuzov. Materialy elektronnoj tekhniki. 2021. T. 23. № 3. S. 167–176. DOI:10.17073/1609-3577-2020-3-167-176 (in Russian).
  9. Osadchij E.N. Analiz dinamicheskogo diapazona mikrovolnovyh usilitelej na rezonansno-tunnel'nyh diodah s uchetom avtosmeshcheniya. Politematicheskij setevoj elektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2017. № 133.
    S. 709–717 (in Russian).
  10. Vetrova N.A., Ivanov Yu.A., Kuimov E.V., Makeev M.O., Meshkov S.A., Pchelincev K.P., Shashurin V.D. Modelirovanie tokoperenosa v AlAs/GaAs-geterostrukturah s uchetom mezhdolinnogo rasseyaniya. Radioelektronika. Nanosistemy. Informacionnye tekhnologii. 2018. T.10. № 1. S. 71–76. DOI:10.17725/rensit.2018.10.071 (in Russian).
  11. Soboleva O.S., Yuferev V.S., Podoskin A. A., Pikhtin N.A., Zolotarev V.V., Golovin V.S., Slipchenko S.O. Numerical study of carrier transport in n+/n/n+GaAs/AlGaAs heterostructure at high current densities. IEEE Transactions on Electron Devices. 2020. V. 67. № 2. P. 438. DOI:10.1109/TED.2019.2960936
  12. Nadar S., Zaknoune M., Wallart X., Coinon C., Emilien P., Ducournau G., Gamand F., Thirault M. High Performance Heterostructure Low Barrier Diodes for Sub-THz Detection. IEEE Transactions on Terahertz Science and Technology. 2017. V. 7. № 6. P. 780. DOI:10.1109/TTHZ.2017.2755503
  13. Baba R., Stevens B.J., Mukai T., Hogg R.A. Epitaxial Designs for Maximizing Efficiency in Resonant Tunneling Diode Based Terahertz Emitters. IEEE Journal of quantum electronic. 2018. V. 54. № 2. DOI:10.1109/JQE.2018.2797960
  14. Reznik R.R., Kryzhanovskaya N.V., Zubov F.I., ZhukovA. E., Khabibullin R.A., Morozov S.V., Cirlin S.V. MBE growth, structural and optical properties of multilayer heterostructures for quantum-cascade laser. Journal of Physics: Conf. Series. 2017. V. 917. P. 052012. DOI:10.1088/1742-6596/917/5/052012
  15. ZHukov A.E., Cyrlin G.E., Reznik R.R., Samsonenko Yu.B., Hrebtov A.I., Kaliteevskij M.A., Ivanov K.A., Kryzhanovskaya N.V., Maksimov M.V., Alferov ZH.I. Mnogoslojnye geterostruktury dlya kvantovo-kaskadnyh lazerov teragercevogo diapazona. Fizika i tekhnika poluprovodnikov. 2016. T. 50. № 5. S. 674–678 (in Russian).
  16. Volkov O.Yu., Dyuzhikov I.N., Logunov M.V., Nikitov S.A., Pavlovskij V.V., Shchavruk N.V., Pavlov A.Yu., Habibullin R.A. Issledovanie spektrov teragercovogo izlucheniya v mnogoslojnyh GaAs/AlGaAsgeterostrukturah. Radiotekhnika i elektronika. 2018. T. 63. № 9.
    S. 981–985 (in Russian).
  17. Volkov V.G. Kvantovo-kaskadnye lazery i ih primenenie v sistemah obespecheniya bezopasnosti i svyazi. Sistemy upravleniya, svyazi i bezopasnosti. 2016. № 1. S. 10–41 (in Russian).
  18. Vetrova N.A., Filyaev A.A., Shashurin V.D. Modelirovanie prozrachnosti nizkorazmernogo kanala s kvantovym ogranicheniem v poluprovodnikovyh priborah na 2D-strukturah s poperechnym tokoperenosom. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2020. T. 12. № 4. S. 54–62 (in Russian).
  19. Shashurin V.D., Vetrova N.A., Pchelincev K.P., Kuimov E.V., Kozij A.A. Effektivnyj vychislitel'nyj algoritm rascheta elektricheskih harakteristik nanorazmernyh geterostruktur na osnove formalizma Landauera–Buttikera. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2019. T. 11. № 1. S. 34–43 (in Russian).
  20. Datta S Lessons from Nanoelectronics: A New Perspective on Transport. Part B: Quantum Transport. Cambridge University Press, Cambridge. 2018.
Date of receipt: 31.01.2022
Approved after review: 02.02.2022
Accepted for publication: 18.02.2022