350 rub
Journal Nanotechnology : the development , application - XXI Century №4 for 2020 г.
Article in number:
Analysis of the influence of the base transistor topology on the static characteristics in order to determine the optimal design of the transistor as part of the MIC for microwave radiothermometry
DOI: 10.18127/j22250980-202004-04
UDC: 621.382
Authors:

S.V. Chizhikov¹, V.G. Tikhomirov², G.A. Gudkov³

  1. Bauman Moscow State Technical University (Moscow, Russia)
  2. St.-Petersburg State Electrotechnical University «LETI» (St.-Petersburg, Russia)
  3. HYPERION ltd. (Moscow, Russia)

1 chigikov95@mail.ru, 2 vv11111@yandex.ru, 3 ooo.giperion@gmail.com

Abstract:

The method of microwave radiothermometry (RTM-method) allows to measure and visualize the internal temperature of the patient's tissues on the monitor screen, thus it is of interest for early diagnosis of cancer, since changes in tissue temperature usually precede structural changes that are detected by conventional diagnostic methods, and can be used in various fields of medicine. 

The principle of operation of the RTM method is based on measuring the intensity of natural electromagnetic radiation of a physical body. Measurement of the heat radiation density of the human body in the microwave range is carried out using a radiometric receiver (radiothermometer) with applicator antennas connected to its input. At the same time, a number of essential requirements are imposed on radiometric receivers.

One of the possible ways to ensure compliance with these requirements is the use of modern microelectronics technologies and modern semiconductor microwave component base for various purposes. The high permittivity of materials such as GaAs, GaN and solid solutions based on them allows to create planar antennas with minimal topological dimensions. This feature of these materials allows you to create receiving and transmitting paths in the form of monolithic integrated circuits (MIC), which, on the one hand, reduce the noise coefficient of the receiving path, on the other-reduce the loss of signal power from the antennas to the amplifier.

The main design elements of the radio thermometer receiver that provide the technical and functional characteristics of the device are a switch and a low-noise amplifier based on pHEMT on AlGaAs/GaAs heterostructures.

To determine the optimal transistor structure for use in the MIC for microwave radiometry mathematical simulation of the effect of its topology on the static characteristics was conducted, namely the dependence of the influence of the groove depth of the sealing part, the position of the shutter in the groove relative to the drain source, the slot width of the sealing part on the current-voltage characteristics of the transistor was investigated.

Mathematical modeling has revealed the dependence of the influence of the base transistor topology (pHEMT on AlGaAs/GaAs heterostructures) on static characteristics and determine the optimal design of the transistor as part of the MIC for microwave radiothermometry.

The work was carried out with the financial support of the Russian Foundation for basic research (RFBR) as part of the scientific project No. 20-37-90124 dated 24.08.2020 "Identification and research of key elements of medical radiothermometers in a monolithic integrated design that meet the high requirements for sensitivity, accuracy, broadband, noise immunity".

Pages: 40-53
References
  1. Gudkov A.G., Shashurin V.D., Chizhikov S.V. i dr. Ispol'zovanie metoda mnogokanal'noj mikrovolnovoj radiometrii dlya funkcional'noj diagnostiki golovnogo mozga. Medicinskaya tekhnika. 2019. № 2 (314). S. 22–25 (In Russian).
  2. Sedankin M.K., Gudkov A.G., Leushin V.Yu., Vesnin S.G., Sidorov I.A., Chupina D.N., Agasieva S.V., Skuratov V.A., Chizhikov S.V. Mikrovolnovaya radiometriya organov malogo taza. Medicinskaya tekhnika. 2019. № 4. S. 45–49 (In Russian).
  3. Vesnin S., Sedankin M., Ovchinnikov, Leushin V., Skuratov V., Nelin I., Konovalova A. Research of a microwave radiometer for monitoring of internal temperature of biological tissues. Eastern-European Journal of Enterprise Technologies. 2019. V. 4. № 5 (100). P. 6–15.
  4. Leushin V.Yu., Shashurin V.D., Chizhikov S.V. i dr. Rezul'taty razrabotki eksperimental'nogo obrazca pribora dlya neinvazivnoj diagnostiki sostoyaniya golovnogo mozga s ispol'zovaniem metoda mnogokanal'noj mikrovolnovoj radiometrii. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2019. T. 11. № 1. S. 44–50 (In Russian).
  5. Gulyaev Yu.V., Leushin V.Yu., Gudkov A.G., ShChukin S.I., Vesnin S.G., Kublanov V.S., Porohov I.O., Sedankin M.K., Sidorov I.A. Pribory dlya diagnostiki patologicheskih izmenenij v organizme cheloveka metodami mikrovolnovoj radiometrii. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2017. № 2. T. 9. S. 27–45 (In Russian).
  6. Sedankin M.K., Leushin V.Yu., Gudkov A.G., Vesnin S.G., Hromov D.A., Porohov I.O., Sidorov I.A., Agasieva S.V., Gorlacheva E.N. Modelirovanie sobstvennogo teplovogo izlucheniya pochki v mikrovolnovom diapazone. Medicinskaya tekhnika. 2019. № 1. S. 44–47 (In Russian).
  7. Gudkov A. The prospects of creating of microwave radiothermography based on monolithic integrated circuits. ITM Web of Conferences. 2019. № 30. 13001. P. 1–8.
  8. Gudkov A.G., Popov V.V., Chalyh A.E. i dr. Nauchno-tekhnicheskie serii. Vypusk: Ustrojstva SVCh i antennye sistemy. Kn.2. Modelirovanie, proektirovanie i tekhnologii SVCh-ustrojstv i FAR: Kollektivnaya monografiya. Pod. red. A.Yu. Grineva. M.: Radiotekhnika. 2014. 198 s. (In Russian).
  9. Gudkov A.G. Process razrabotki novogo vysokotekhnologichnogo naukoemkogo tovara. Naukoemkie tekhnologii. 2003. T. 4. № 6. S. 69–83 (In Russian).
  10. Gudkov A.G. Kompleksnaya tekhnologicheskaya optimizaciya medicinskoj tekhniki na vsekh etapah ee zhiznennogo cikla. Biomedicinskaya radioelektronika. 2012. № 5. S. 51–61 (In Russian).
  11. Gudkov A.G. Radioapparatura v usloviyah rynka. Kompleksnaya tekhnologicheskaya optimizaciya. M.: «SAJNS-PRESS». 2008. 336 s. (In Russian).
  12. Agasieva S.V., Gudkov A.G. i dr. Povyshenie nadyozhnosti i kachestva GIS i MIS SVCh. Kn. 1. Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2012. 212 s.  (In Russian).
  13. Agasieva S.V., Gudkov A.G. i dr. Povyshenie nadyozhnosti i kachestva GIS i MIS SVCh. Kn. 2. Pod red. A.G. Gudkova i V.V. Popova. M. OOO «Avtotest». 2013. 214 s. (In Russian).
  14. Agasieva S.V., Gudkov A.G., Tihomirov V.G. i dr. Povyshenie nadyozhnosti i kachestva GIS i MIS SVCh. Kn. 3. Pod red. V.N. V'yuginova, A.G. Gudkova i V.V. Popova. M.: OOO NTP «Virazh-Centr». 2016. 252 s. (In Russian).
  15. V'yuginov V.N., Gudkov A.G., Korolev A.V., Leushin V.Yu., Plyushchev V.A., Popov V.V., Sidorov I.A. Elektronnyj modul' mnogokanal'nogo SVCh-trakta dlya sistem radiotermokartirovaniya. Elektromagnitnye volny i elektronnye sistemy. 2014. № 1. S. 27– 34 (In Russian).
  16. Agasieva S.V., Gudkov A.G., Korolyov A.V., Leushin V.Yu., Plyushchev V.A., Sidorov I.A. Rezul'taty razrabotki unificirovannogo priyomnogo modulya dlya mnogokanal'nyh medicinskih radiotermografov. 24-ya Mezhdunar. Krymskaya konferenciya «SVCh-tekhnika i telekommunikacionnye tekhnologii» (KryMi-Ko’2014). Sevastopol', 7–13 sentyabrya 2014 g.: Materialy konf. v 2 t. Sevastopol': Veber. 2014. T. 2. S. 1045–1046 (In Russian).
  17. V'yuginov V.N., Gudkov A.G., Korolyov A.V., Leushin V.Yu., Plyushchev V.A., Popov V.V., Sidorov I.A. Elektronnyj modul' mnogokanal'nogo SVCh-trakta dlya sistem radiotermokartirovaniya. Elektromagnitnye volny i elektronnye sistemy. 2014. T. 19. № 1. S. 27–34 (In Russian).
  18. Sedankin M. K. i dr. Mnogokanal'nyj mikrovolnovyj radiotermometr. Mezhdunar. nauch.-tekh. konf. «Informatika i tekhnologii. Innovacionnye tekhnologii v promyshlennosti i informatike. 2017. S. 348–350 (In Russian).
  19. Gudkov A.G. Elektronnye ustrojstva SVCh. Kn.2. Pod red. I.V. Lebedeva. M.: Radiotekhnika. 2008. 400 s. (In Russian).
  20. Momenroodaki P., Popovic Z., Scheeler R. A 1.4-GHz Radiometer for Internal Body Temperature Measurements. Proceedings of the 45th European Microwave Conference. 2015. P. 694–697.
  21. Chizhikov S.V., Solov'yov Yu.V. Elementnaya baza MIS SVCh dlya mikrovolnovoj radiotermometrii. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2020. T. 12. № 2. S. 48–57 (In Russian).
  22. BushminskijI.P., Gudkov A.G., Dergachev V.F. i dr. Konstruktorsko-tekhnologicheskie osnovy proektirovaniya poloskovyh mikroskhem. Pod. red. I.P. Bushminskogo. M.: Radio i svyaz'. 1987. 272 s. (In Russian).
  23. V'yuginov V.N., Grozina M.I., Gudkov A.G. i dr. Monolitnye integral'nye ustrojstva SVCh. Elektromagnitnye volny i elektronnye sistemy. 2014. T. 22. № 4. S. 45–59 (In Russian).
  24. Gudkov A.G. Metodologiya kompleksnoj tekhnologicheskoj optimizacii parametrov SVCh-priborov na osnove geterostruktur. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2019. T.11. № 2. S. 5–25 (In Russian).
  25. Aleksandrov R.Yu. Monolitnye integral'nye skhemy SVCh: vzglyad iznutri. Komponenty i tekhnologii. 2006. № 9. S. 174–182 (In Russian).
  26. HSPICE Simulation and Analysis Manual, Synopsys. 2003. P. 694.
  27. Gudkov A.G., Tikhomirov V.G. et al. Evaluation of the influence mode on the CVC GaN HEMT using numerical modeling. Journal of Physics: Conference Series. 2016. V.741. Is. 1. Art. no. 012024 (3rd International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures, SaintPetersburg OPEN 2016). DOI:10.1088/1742-6596/741/1/012024.
  28. Gudkov A.G., Chizhikov S.V., Agasieva S.V., Tikhomirov V.G., Dynaiev D.D., Popov M.K. Increasing efficiency of GaN HEMT transistors in equipment for radiometry using numerical simulation. Journal of Physics: Conference Series. 2019. V. 1410. № 012191. 
  29. Tikhomirov V., Zemlyakov V., Volkov V., Parnes Ya., Vyuginov V., Lundin W., Sakharov A., Zavarin E., Tsatsulnikov A., Cherkashin N., Mizerov M., Ustinov V. Semiconductors. 2016. V. 50. № 2. P. 244–248.
Date of receipt: 2.10.2020 г.