350 rub
Journal Nanotechnology : the development , application - XXI Century №3 for 2020 г.
Article in number:
Nanoelectronic biosensors for oncological diseases diagnostics
DOI: 10.18127/j22250980-202003-06
UDC: 616.092, 621.382.3
Authors:

T.S. Romanova – Ph.D. (Biol.), Junior Research Scientist, Institute of Biomedical Chemistry (Moscow)

E-mail: romtatyana@mail.ru

K.A. Malsagova – Ph.D. (Biol.), Junior Research Scientist, Institute of Biomedical Chemistry (Moscow)

E-mail: f17-1086@yandex.ru

T.O. Pleshakova – Dr Sc. (Biol.), Deputy Director of Research, Institute of Biomedical Chemistry (Moscow) 

E-mail: pleshakova@gmail.com

A.A. Valueva – Junior Research Scientist, Institute of Biomedical Chemistry (Moscow);  D. Mendeleev University of Chemical Technology of Russia (Moscow)

E-mail: varuevavarueva@gmail.com

R.A. Galiullin – Lead Programmer, Institute of Biomedical Chemistry (Moscow)

E-mail: rafael.anvarovich@gmail.com

V.S. Ziborov – Leading Specialist, Institute of Biomedical Chemistry (Moscow);  Joint Institute for High Temperatures of the RAS (Moscow) 

E-mail: ziborov.vs@yandex.ru

O.F. Petrov – Academician of the RAS, Dr.Sc. (Phys.-Math.), Director of the Institute, 

Joint Institute for High Temperatures of the RAS (Moscow)

E-mail: ofpetrov@ihed.ras.ru

V.G. Nikitaev – Dr.Sc. (Eng.), Professor, Head of the Department of computer medical system,  National Research Nuclear University «MEPhI» (Moscow)

E-mail: kaf46@mail.ru

A.N. Pronichev – Ph.D. (Eng.), First Deputy Head of the Department of Computer Medical Systems,  National Research Nuclear University «MEPhI» (Moscow)

E-mail: kaf46@mail.ru

E.A. Druzhinina – Post-graduate Student, National Research Nuclear University «MEPhI» (Moscow)

E-mail: kaf46@mail.ru

Yu.D. Ivanov – Dr.Sc. (Biol.), Professor, Head of the Nanobiotechnology Laboratory, 

Institute of Biomedical Chemistry (Moscow)

E-mail: yurii.ivanov.nata@gmail.com

Abstract:

The number of oncological patients increases every year, most of them seek medical attention too late. Therefore, the frequency of fatalities is high. Meanwhile, oncotherapy started on time is effective in 95% of cases. This means that it is necessary to develop and implement in medical practice of high-sensitive and exact methods of diagnostics at early and asymptomatic stage of cancer. Review of the most sensitive, exact and promising for mass use in medical practice methods of detection of cancer associated biomolecules at early stage of cancer in patients’ blood.

Field-effect transistor biosensors are the most sensitive. Their principle of action is field-based. At adsorption of charged target proteins on sensors surface an electric field appears, which changes charge carriers concentration in near-surface layer of a semiconductor and its conductivity. Carbon nanotubes, graphene and silicon nanowires are applied as sensor elements of the field-effect transistor nanobiosensors. Their advantages are: high ratio the surface/volume increases sensors sensibility, the measurements are carried out in real time and label-free. The sensors surface is functionalisated with antibodies or aptamers for exact detection of target molecules. Aptamers in comparison with antibodies more stable at storage and analysis, they have higher affinity and cheaper production. The nanobiosensors based on carbon nanotubes, graphene and silicon nanowires are enable to detect of proteins associated with cancer with a concentration sensitivity in a buffer solution to 10−18 М and in serum to 10−16 М. Since most part of cancer associated proteins is non-specific inflammatory proteins and does not form in tumor cells, miRNAs are considered as oncomarkers. Cancerspecific miRNAs are revealed in blood at early stage of the disease and their amount increases with the tumor growth. This miRNAs were also detected to 10−18 М in a buffer solution and to 10−16 М in serum with carbon nanotubes, graphene and silicon nanowires. Carbon nanotubes and graphene with pre-defined properties are difficult to get in large quantities, for this reason such biosensors are difficult-to-make for mass diagnostics. Fabrication of silicon nanowire biosensors is CMOS-compatible. 

This review points out the prospects for the use of nanowire biosensors «silicon-on-insulator» based in medical practice for mass early diagnostic of serious illness with long asymptomatic period, in particular oncological diseases. 

For citation

​​​​​​

References
  1. WHO Information Bulletin; World Health Organization: Geneva, Switzerland. 2018  (In Russian).
  2. Sostoyanie onkologicheskoj pomoshchi naseleniyu Rossii v 2018 godu. Pod red. A.D. Kaprina, V.V. Starinskogo, G.V. Petrovoj. M.: Moskovskij nauchnoissledovatel'skij onkologicheskij institut imeni P.A. Gercena. 2019 (In Russian).
  3. WHO Information Bulletin; World Health Organization: Geneva, Switzerland. 2017.
  4. Rissin D.M, Kan C.W., Campbell T.G., Howes S.C., Fournier D.R., Song L., Piech T., Patel P.P., Chang L., Rivnak A.J., Ferrell E.P., Randall J.D., Provuncher G.K., Walt D.R., Duffy D.C. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nature Biotech. 2010. V. 28. P. 595–599.
  5. Gao A., Yang X., Tong J., Zhou L., Wang Y., Zhao J., Mao H., Li T. Multiplexed detection of lung cancer biomarkers in patients serum with CMOScompatible silicon nanowire arrays. Biosensors and Bioelectronics. 2017. V. 91. P. 482–488.
  6. Vu C.-A., Chen W.-Y. Field-effect transistor biosensors for biomedical applications: recent advances and future prospects. Sensors. 2019. V. 19. P. 4214–4236.
  7. Tran Th.-T., Mulchandani A. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. Trends in analytical chemistry. 2016. V. 79.  P. 222–232.
  8. Hu P., Zhang J., Li L., Wang Z., O’Neill W., Estrela P. Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors. Sensors. 2010. V.10 (5). P. 5133–5159.
  9. Wasik D., Mulchandani A., Yates M.V. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosensors and Bioelectronics. 2017. V. 91. P. 811–816.
  10. Li Y., Hodak M., Lu W., Bernholc J. Selective sensing of Ethylene and glucose using carbon-nanotube-based sensors: An: Ab Initio Investigation. Nanoscale. 2017. V. 9 (4). P. 1687–1698.
  11. Majd S.M., Salimi A. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Analytica Chimica Acta. 2018. V. 1000. P. 273–282.
  12. El-Ahwany E.G.E., Mourad L., Zoheiry M.M.K., Abu-Taleb H., Hassan M., Atta R., Hassanien M., Zada S. MicroRNA-122a as a non-invasive biomarker for HCV genotype 4-related hepatocellular carcinoma in Egyptian patients. Arch Med Sci. 2019. V. 15 (6). P. 1454–1461.
  13. Ramnani P., Gao Y., Ozsoz M., Mulchandani A. Electronic detection of MicroRNA attomolar level with high specificity. Anal. Chem. 2013. V. 85 (17)  P. 8061–8064.
  14. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991. V. 354. P. 56–58.
  15. Guo T., Nikolaev P., Thess A., Colbert D.T., Smalley R.E. Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 1995.  V. 243 (1–2). P. 49–54.
  16. Dresselhaus M.S., Dresselhaus G., Avouris P. Carbon Nanotubes: synthesis, structure, properties and applications. Springer, Berlin; New York, 2001.
  17. Cho I.-H., Lee J., Kim J., Kang M.-s., Paik J. K., Ku S., Cho H.-M., Irudayaraj J., Kim D.-H. Current technologies of electrochemical immunosensors: perspective on signal amplification. Sensors. 2018. V. 18 (207).
  18. Schuler-Toprak S., Treeck O., Ortmann O. Human chorionic gonadotropin and breast cancer. Internetional journal of molecular sciences. 2017. V. 18.  P. 1587–1600.
  19. Lundin, M., Nordling, S., Carpelan-Holmstrom, M., Louhimo, J., Alfthan, H., Stenman, U.H., Haglund, C. A comparison of serum and tissue hCG beta as prognostic markers in colorectal cancer. Anticancer Res. 2000. V. 20. P. 4949–4951.
  20. Lenhard M., Tsvilina A., Schumacher L., Kupka M., Ditsch N., Mayr D., Friese K., Jeschke U. Human chorionic gonadotropin and its relation to grade, stage and patient survival in ovarian cancer. BMC Cancer. 2012. V. 12 (2).
  21. Sheaff M.T., Martin J.E., Badenoch D.F., Baithun S.I. Beta hCG as a prognostic marker in adenocarcinoma of the prostate. J. Clin. Pathol. 1996. V. 49.  P. 329–332.
  22. Wong Y.P., Tan G.C., Aziz S., Pongprakyun S., Ismail F. Beta-human chorionic gonadotropin-secreting lung adenocarcinoma. Malays. J. Med. Sci. 2015.  V. 22. P. 76–80.
  23. Teixeira S., Burwella G., Castainga A., Gonzalezb D., Conlanb R.S., Guya O.J. Epitaxial graphene immunosensor for human chorionic gonadotropin. Sensor and Actuators B. 2014. V. 190. P. 723–729.
  24. Wang Y., Tang L., Li Z., Lin Y., Li J. In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells. Nat. Protoc. 2014. V. 9. P. 1944.
  25. Xu S., Zhang Ch., Jiang Sh., Hu G., Li X., Zou Y., Liu H., Li J., Li Zh., Wang X., Wang M., Li J. Graphene foam field-effect transistor for ultra-sensitive label-free detection of ATP. Sensor and Actuators B. 2019. V. 284. P. 125–133.
  26. Chen X., Jia X., Han J., Ma J., Ma Z. Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosens. Bioelectron. 2013. V. 50. 356–361.
  27. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V. Electric field effect in atomically thin carbon films. Science. 2004. V. 306 (5696). P. 666–669.
  28. Hernandez Y., Nicolosi V., Lotya M., Blighe F.M., Sun Z., De S. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008. V. 3 (9). P. 563–568.
  29. Lotya M., Hernandez Y., King P.J., Smith R.J., Nicolosi V., Karlsson L.S. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009. V. 131 (10). P. 3611–3620.
  30. Berger C., Song Z., Li T., Li X., Ogbazghi A.Y., Feng R. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B. 2004. V. 108 (52). P. 19912–19916.
  31. Cui Y., Wei Q., Park H., Lieber C.M. Nanowire nanosensor for highly sensitive and selective detection of biological and chemical species. J. of Science. 2001. V. 293. P. 1289–1292.
  32. Patolsky F., Zheng G. F., Hayden O., Lakadamyali M., Zhuang X.W., Lieber C.M. Electrical detection of single viruses. J. Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 14017–14022.
  33. Elfstrom N., Juhasz R., Sychugov I., Engfeldt T., Eriksson Karlström A.E., J. Surface change sensitivity of silicon nanowire: size dependence. Nano Lett. 2007. V. 7 (9). P. 2608–2612.
  34. Li Z., Rajendran B., Kamins T.I., Li X., Chen Y., Williams R.S. Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation. Appl. Phys. A: Mater. Sci. Process. 2005. V. 80. P. 1257–1260.
  35. Malsagova K.A., Pleshakova T.O., Galiullin R.A., Kaysheva A.L., Shumov I.D., Ilnitskii M.A., Popov V.P., Glukhov A.V., Archakov A.I., Ivanov Yu.D. Ultrasensitive nanowire-based detection of HCVcoreAg in the serum using a microwave fe. Analytical Methods. 2018. V.10(23). P.2740–2749.
  36. Ivanov Yu.D., Masal'gova K.A., Pleshakova T.O., Shumov I.D., Kajsheva A.L., Popov V.P., Naumova O.V., Fomin B.I., Nasimov D.A., Latyshev A.V., Aseev A.L., Tatur V.Yu., Ivanova N.D., Konovalova G.M., Archakov A.I. Registraciya belka v syvorotke krovi s pomoshch'yu biosensora na baze polevogo nanotranzistora. Patologicheskaya fiziologiya i eksperimental'naya terapiya. 2016. T.60 (1). S. 94–98  (In Russian).
  37. Ivanov Yu.D., Pleshakova T.O., Kozlov A.F., Masal'gova K.A., Krohin N.V., Kajsheva A.L., Shumov I.D., Popov V.P., Naumova O.V., Fomin B.I., Nasimov D.A., Aseev A.L., Archakov A.I. KNI-nanoprovolochnyj tranzistor dlya detekcii molekul D-NFATc1. Avtometriya. 2013. T. 49(5). S. 119–126 (In Russian).
  38. Yen P.-W., Huang Ch.-W., Huang Y.-J., Chen M.-Ch., Liao H.-H., Lu Sh.-Sh., Lin Ch.-T. A device design of an integrated CMOS poly-silicon biosensor-onchip to enhance performance of biomolecular analytes in serum samples. Biosensors and Bioelectronics. 2014. V.61. P. 112–118.
  39. Kruchinina M.V., Prudnikova Ya.I., Kurilovich S.A., Gromov A.A., Kruchinin V.N., Atuchin V.V., Naumova O.V., Spesivcev E.V., Volodin V.A., Pel'tek S.E., Shuvalov G.V., Generalov V.M. Vozmozhnosti ellipsometrii, raman-spektroskopii, KNI-nanoprovolochnogo biosensora v diagnostike kolorektal'nogo raka. Sibirskij onkologicheskij zhurnal. 2017. T. 16(4). S. 32–41 (In Russian).
  40. Zhu K., Zhang Y., Li Z., Zhou F., Feng K., Dou H., Wang T. Simultaneous detection of α-fetoprotein and carcinoembryonic antigen based on Si nanowire field-effect transistors. Sensors. 2015. V. 15. P. 19225–19236.
  41. Ivanov Yu.D., Mal'sagova K.A., Pleshakova T.O., Shumov I.D., Kajsheva A.L., Popov V.P., Naumova O.V., Fomin B.I., Nasimov D.A., Latyshev A.V., Aseev A.L., Tatur V.Yu., Ivanova N.D., Konovalova G.M., Archakov A.I. Registraciya belka v syvorotke krovi s pomoshch'yu biosensora na baze polevogo nanotranzistora. Patologicheskaya fiziologiya i eksperimental'naya terapiya. 2016. T. 60(1). S. 94–98 (In Russian).
  42. Tankovich. S.N., Voytsitskiy V.E., Laktionov P.P. Modern approach to breast cancer diagnostics. Biochem (Mosc.). Suppl. Ser. B: Biomed.Chem. 2014.  V. 8(4). P. 302–313.
  43. Nikitina A.V., Amelina E.A., Mardanly S.G. Rakovo-embrional'nyj antigen i osobennosti ego ispol'zovaniya v kachestve onkomarkera. Sovremennye aspekty laboratornoj diagnostiki i innovacij v medicine. Sbornik materialov nauchno-prakticheskoj konferencii s mezhdunarodnym uchastiem. Pod obshch. red. S.G. Mardanly. Orekhovo-Zuevo: Gosudarstvennyj gumanitarno-tekhnologicheskij universitet. 2018. S. 58–59  (In Russian).
  44. Wittmann J., Jack H.M. Serum microRNAs as powerful cancer biomarkers Biochim.Biophys. Acta Rev. Cancer. 2010. V. 1806(2). P. 200–207.
  45. Shimomura A., Shiino S., Kawauchi J., Takizawa S., Sakamoto H., Matsuzaki J., Ono M., Takeshita F., Niida S., Shimizu C., Fujiwara Y., Kinoshita T., Tamura K., Ochiya T. Novel combination of serum microRNA for detection breast cancer in the early stage. Cancer Sci. 2016. V. 107(3). P. 326–334.
  46. Mal'sagova K.A., Pleshakova T.O., Ivanov Yu.D., Popov V.P., Kushlinskij N.E., Archakov A.I. Detekciya mikroRNK, associirovannyh s razvitiem raka molochnoj zhelezy, v plazme krovi s pomoshch'yu nanoprovolochnogo biosensora. Biotekhnologiya: sostoyanie i perspektivy razvitiya. Materialy mezhdunarodnogo foruma. 2018. S. 416–417  (In Russian).
  47. Xu Y.Z., Xi Q.H., Ge W.L., Zhang X.Q. Identification of serum microRNA-21 as a biomarker for early detection and prognosis in human epithelial ovarian cancer. Asian Pac. J. Cancer Prev. 2013. V. 14. P. 1057–1060.
  48. Liu J., Sun H., Wang X., Yu Q., Li S., Yu X., Gong W. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int. J. Mol. Sci. 2014. V. 15. P. 758–773.
  49. Akers J.C., Ramakrishnan V., Kim R., Skog J., Nakano I., Pingle S., Kalinina J., Hua W., Kesari S., Mao Y. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): A platform for glioblastoma biomarker development. PLoS ONE. 2013. V. 8.(10).
  50. Tokuhisa M., Ichikawa Y., Kosaka N., Ochiya T., Yashiro M., Hirakawa K., Kosaka, T., Makino H., Akiyama H., Kunisaki C. Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS ONE. 2015. V. 10.
  51. Yang J.S., Li B.J., Lu H.W., Chen Y., Lu C., Zhu R.X., Liu S.H., Yi Q.T., Li J., Song C.H. Serum miR-152, miR-148a, miR-148b, and miR-21 as novel biomarkers in non-small cell lung cancer screening. Tumour Biol. 2015. V. 36. P. 3035–3042.
  52. Erbes T., Hirschfeld M., Rucker G., Jaeger M., Boas J., Iborra S., Mayer S., Gitsch G., Stickeler E. Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer. 2015. V. 15. P. 221–232.
  53. Malsagova K.A., Pleshakova T.O., Kozlov A.F., Shumov I.D., Ilnitskii M.A., Miakonkikh A.V., Popov V.P., Rusenko K.V., Glukhov A.V., Kupriyanov I.N., Ivanova N.D., Rogozhin A.E., Archakov A.I., Ivanov Yu.D. Micro-Raman Spectroscopy for Monitoring of deposition quality of high-k stack protective layer onto nanowire FET chip for highly sensitive miRNA detection. Biosensor. 2018. V. 8 (72). 
  54. Ivanov Y.D., Pleshakova T.O., Malsagova K., Kurbatov L.K., Popov V.P., Glukhov A.V., Smirnov A., Enikeev D., Potoldykova N., Alekseev B., Dolotkazin D., Kaprin A., Ziborov V., Petrov O.F., Archakov A.I. Detection of marker miRNAs, associated with prostate cancer, in plasma using SOI-NW biosensor in direct and inversion modes. Sensors. 2019. V. 19. P. 5248–5264.
  55. Ivanov Yu.D., Pleshakova T.O., Malsagova K.A., Kozlov A.F., Kaysheva A.L., Shumov I.D., Galiullin R.A., Kurbatov L.K., Popov V.P., Naumova O.V., Fomin B.I., Nasimov D.A., Aseev A.L., Alferov A.A., Kushlinsky N.E., Lisitsa A.V., Archakov A.I. Detection of marker miRNA in plasma using SOI-NW biosensor. Sensor and Actuator B: Chemical. 2018. V. 261. P. 566–571.
  56. Ivanov Y.D., Pleshakova T.O., Malsagova K., Kurbatov L.K., Popov V.P., Glukhov A.V., Smirnov A., Enikeev D., Potoldykova N., Alekseev B., Dolotkazin D., Kaprin A., Ziborov V., Petrov O.F., Archakov A.I. Detection of marker miRNAs, associated with prostate cancer, in plasma using SOI-NW biosensor in direct and inversion modes. Sensors. 2019. V. 19. P. 5248–5264.
  57. Tran D. P., Pham Th. Th. Th., Wolfrum B., Offenhausser A., Thierry B. CMOS-compatible silicon nanowire field-effect transistor biosensor: technology development toward commercialization. Materials. 2018. V. 11 (5). P. 785–810.
Date of receipt: 11 августа 2020 г.