350 rub
Journal Nanotechnology : the development , application - XXI Century №2 for 2020 г.
Article in number:
Theoretical investigation of aluminum nanoparticales surface energy with low radii by using density functional theory in view of metal-vacuum boundary effects
DOI: 10.18127/j22250980-202002-03
UDC: 539.19+539.21
Authors:

O.S. Erkovich – Ph.D. (Phys.-Math.), Associate Professor, Physics Department,  Bauman Moscow State Technical University 

E-mail: erkovitch@mail.ru

V.Yu. Fedorova – Master’s Degree Student, Department of Physics, 

Bauman Moscow State Technical University 

E-mail: fedorovavyu@gmail.com

Abstract:

Statement of the problem. Determination of the energy characteristics of nanomaterials is of interest both from the point of view of experiment and theory. Since the experiment is an expensive and lengthy procedure, it is more expedient to carry out a theoretical description of the model and numerical simulation to obtain preliminary results and evaluate the effectiveness of nanomaterials. Aim of the work – to determine the specific surface energy of an aluminum nanoparticle, taking into account the selected test function of electron density.

Results. This article presents the results of numerical calculations of the surface energy of aluminum nanoparticles. The choice of the object of research is based on the methods of obtaining nanoparticles, as well as practical usage in the field of rocket engine building. Also, on the basis of experimental data, the range of nanoparticle radius was chosen for numerical calculations of the necessary parameters and coefficients. Within the framework of the density functional theory, an energy functional is presented that takes into account the inhomogeneity of the electron gas inside the metal nanoparticle. A test function of the electron density describing the distribution of particles inside the system is considered. Numerical calculations are considered on spherically symmetric nanoparticles in the jelly model. In considering the problem posed, we took into account the effect that occurs near the metal-medium boundary, which is associated with oscillations of the electron density near a given boundary. The surface energy values for other metals were also obtained within the framework of the constructed model.  

Practical signification. The obtained results can be used for further refinement and modification of the method, as well as for calculating energy characteristics, estimating the dielectric and magnetic characteristics necessary for use in problems associated with combustion of nanopowders in fuel.

Pages: 25-31
References
  1. Yagodnikov D.A. Aktual'nye problemy raketnogo dvigatelestroeniya. M.: Izd-vo MGTU im. N.E. Baumana. 2017. 295 s. (In Russian).
  2. Poryazov V.A. Vliyanie dispersnosti chastic alyuminiya na skorost' goreniya metallizirovannyh smesevyh tverdyh topliv. Vestnik Tomskogo gosudarstvennogo universiteta. 2015. № 1(33). S. 96–104. (In Russian).
  3. Hohenberg P., Kohn W. Density functional theory (DFT). Phys. Rev. 1964. № 136. B864.
  4. Takao Tsuneda. Density Functional Theory in Quantum Chemistry. Springer Japan. 2014. P. 207.
  5. Smith J.R. Self-consistent many-electron theory of electron work functions and surface potential characteristics for selected metals. Physical Review. 1969. № 181(2). P. 522–529.
  6. Satanin A.M. Vvedenie v teoriyu funkcionala plotnosti. Nizhnij Novgorod. 2009. 64 c. (In Russian).
  7. Jones R.O., Gunnarsson O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 1989. № 61. P. 689. 
  8. Gunnarsson O., Lundquist B.I. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B. 1976.  № 13. P. 4274.
  9. Dem'yanov V.F., Tamasyan G.Sh. O pryamyh metodah resheniya variacionnyh zadach. Trudy instituta matematiki i mekhaniki UrO RAN. 2010. № 5(16). S. 36–47 (In Russian).
  10. Medasani B., Park Y.H., Vasiliev I. Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticle. Phys.Rev. B. 2007. № 75. P. 235436 (1–6).
  11. Fedorova V.Yu. Funkciya raspredeleniya elektronnoj plotnosti dlya metallicheskih nanochastic v ramkah teorii funkcionala plotnosti. Politekhnicheskij molodezhnyj zhurnal. 2018. № 8. S. 1–8. DOI: 10.18698/2541-8009-2018-8-355 (In Russian).
  12. Kiejna A., Wojciechowski K.F. Metal Surface Electron Physics. Oxford: Alden Press. 1996. 312 p.
  13. Sarkisov P.D., Bajkov Yu.A., Meshalkin V.P. Metod samosoglasovannogo polya v priblizhenii Hartri dvuhelektronnyh sistem dlya razlichnyh elektronnyh konfiguracij. Doklady akademii nauk. 2008. T. 423. № 3. S. 331–335 (In Russian).
  14. Glushkov V.L., Erkovich O.S. Harakteristiki poverhnosti shchelochnyh metallov s uchetom diskretnosti kristallicheskoj reshetki i fridelevskih oscillyacij elektronnoj plotnosti. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki. 2017. № 4. S. 75–89. DOI: 10.18698/1812-3368-2017-4-75-89  (In Russian).
Date of receipt: 10 марта 2020 г.