350 rub
Journal Nanotechnology : the development , application - XXI Century №3 for 2016 г.
Article in number:
The peculiarities of InGaAsP/InP nanoheterostructures technology for laser radiation receivers at 1064 nm wave length
Authors:
A.E. Marichev - Post-graduate of the Optoelectronic Chair St-P.GETU «LETI»; Laboratory Assistant, Ioffe Institute. E-mail: segregate1@yandex.ru R.V. Levin - Senior Research Scientist, Ioffe Institute. E-mail: lev13@yandex.ru A.B. Gordeeva - Ph.D. (Phys.-Math.), Senior Research Scientist, Ioffe Institute. E-mail: anasta-siya.gordeeva@mail.ioffe.ru G.S. Gagis - Ph.D. (Phys.-Math.), Senior Research Scientist, Ioffe Institute. E-mail: galina.gagis@gmail.com V.I. Kuchinskii - Dr.Sc. (Phys-Math), Professor, Main Research Scientist, Ioffe Institute, Head of the Optoelectronic Chair St-P.GETU «LETI». E-mail: HHvladimir@kuchU.UioffeU.UruH N.D. Prasolov - Engineer Ioffe Institute, Post-graduate, St-P. National Research University of information Technology, Mechanic and Optic (ITMO). E-mail:nikpras@bk.ru N.M. Shmidt - Dr.Sc. (Phys-Math), Professor, Main Research Scientist, Ioffe Institute, Teacher of the Optoelectronic Chair St-P.GETU «LETI». E-mail: HHnataliaU.Ushmidt@mailU.UioffeU.Uru
Abstract:
The problem in the development of the photovoltaic converters for power laser radiation transfer at 1064 nm wave length is considered in this paper. The problem is related to the peculiarities of the technology of InGaAsP/InP nano heterostructures for 1064 nm wave length. The growth conditions of InGaAsP composition for this wave length get on the region of the spinodal decomposition of the solid solution. The selection of growth conditions was carried out by the use of the results of the simulation in the framework of quasi regular solid solution model. The nano heterostructures were grown by the MOCVD technique on the AIXTRON AIX-200 installation. The impact of the peculiarities of the stress relaxation on the photoluminescence intensity was elucidated on the set of the InGaAsP layers with the thickness in the 50-1000 nm range. As a result, result the mechanism of the stress relaxation by the surface relief formation was revealed in several InGaAsP layers using the atomic force microscopy. The growth conditions allowing us to reduce the stress by 1.4109 dyn.сm2 in InGaAsP layers and an increase in the photoluminescence intensity at 1064 nm wave length by an order of magnitude in were obtained. A small lattice mismatch between InGaAsP and InP substrate and the decrease in the stress due to a surface relief formation allow us to avoid the spinodal decomposition in solid solution and to obtain the photovoltaic converters based on the InGaAsP/InP nano heterostructure with the 50% efficiency.
Pages: 27-31
References

 

  1. Krokhin O.N. Peredacha ehlektricheskojj ehnergii posredstvom lazernogo izluchenija // UFN. 2006. T. 176. №4. S. 441-444.
  2. Hecht J. Laser-powered helicopter hovers for hours // New Scientist. 2010. V. 207. № 25. R. 2777-2781.
  3. Philips J. Bonds and Bands in Semiconductors. New York: Academic Press. 1973. 94 r.
  4. Mori M., Kagawa H., Saito Y. Current Status of Study on Hydrogen Production with Space Solar Power Systems // (SSPS) Proc. Conf. «Solar Power from Space-04» Granada, Spain. 2004. SSPS. 567. p. 3.
  5. Stringfellow Y. Organometallic Vapor-Phase Epitaxy: Theory and Practice. Boston: Academic Press. 1989. 94 r.
  6. Schlenker D., Miyamoto T., Chen Z., Kawaguchi M., Kondo T. Inclusion of Strain in Miscibility Gap Calculation for III-V Semiconductors // Japanese Journal of Applied Physics. 2000. № 39. P. 5751-5757.
  7. Onabe K. Calculation of Miscibility Gap in Quaternary InGaPAs with Stringtly Regular Solution Approximation // Japanese Journal of Applied Physics. 1982. V. 21. № 5. P. 797-798.
  8. Asomoza R., Elyukhin V., Pena-Sierra R. Spinodal decomposition in the AIIIxB III1-xCV y DV1-y quaternary alloys // Journal of Crystal Growth. 2001. № 222. P. 58-63.
  9. Marichev A.E., Pushnyi B.V. and Levin R.V. Investigation of spinodal decomposition of InGaAsP solid solutions grown by the MOCVD technique // Journal of Physics: Conference Series 690. 2016. P. 012010.
  10. Levin R.V., Marichev A.E., SHvarc M.Z., Marukhina E.P., KHvostikov V.P., Pushnyjj B.V., Mizerov M.N., Andreev V.M. Fotoehlektricheskie preobrazovateli koncentrirovannogo solnechnogo izluchenija na osnove InGaAsP(1.0 ehV)/InP-geterostruktur. // Fizika i tekhnika poluprovodnikov. 2015. T. 49. № 5. S. 715-719.
  11. Geguzin JA.E. Diffuzionnaja zona. M.: Nauka. 1979. 343 s.