350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2013 г.
Article in number:
Design techniques for static power reducing of nanometer VLSI
Authors:
V.A. Bespalov, V.M. Dyakonov, A.V. Korshunov
Abstract:
One of challenge with CMOS technology scaling is the rapid increase of chip consumption power. It is needed to develop new design methodology to reduce power consumption. New methodology will minimize power without area or performance penalty. There are two kinds of power dissipation in synchronous CMOS VLSI: dynamic and static power. In this paper, we consider static power optimization methods. Static power dissipation includes three major components: subthreshold leakage, gate tunneling leakage and drain area leakage (including reverse bias leakage, GIDL and DIBL). The subthreshold leakage, Isub, dominates other types of leakage in VLSI for technology before 65nm. We describe methods of minimization leakage power for physical, schematic and logic stages of nanometer VLSI design flow. This paper describes techniques and issues for design techniques for static power reducing of VLSI. We are considering such schematic techniques as sleep approach, stack effect, VTCMOS and MTCMOS. Also we describe new approaches that allow save signal value in standby mode of VLSI. These approaches are including sleepy stack; sleepy-keeper; dual-sleep. We are considering such logic techniques as power gating (coarse grain MTCMOS) and clustering voltage scaling (CVS). This approaches allowed significantly reduced leakage for nanometer CMOS VLSI. In conclusion we are analyzing the efficiency of static power optimization methods. Also we are considering the efficiency power optimization methods for nanometer CMOS technology.
Pages: 37-43
References
  1. Rabaey J., Pedram M. Power Aware Design Methodologies. NY.: Springer. 2003.
  2. International Technology Roadmap for Semiconductors [Электронный ресурс] // ITRS: [сайт]. [2010]. URL: http://www.itrs.net/
  3. Keating M., Flynn D., Aitken R., Gibbons A., Shi K. Low Power Methodology Manual: For System-on-Chip Design. NY.: Springer. 2007.
  4. Rabaey J., ChandrakasanA., NikolicB.Digital Integrated Circuits, 2nd ed. New Jersey: Prentice Hall. 2003.
  5. Rabaey J. Low Power Design Essentials. NY.: Springer. 2009.
  6. Дьяконов В.М., Коршунов А.В., Мариныч А.В. Методы оптимизации динамической мощности для СБИС и «систем на кристалле» // Электромагнитные волны и электронные системы. 2010. №3. C. 33-38.
  7. Korec J. Low Voltage Power MOSFETs. Design, Performance and Applications // Springer Briefs in Applied Sciences and Technology. V. 7. NY.: Springer. 2011.
  8. Veendrick J.M. Nanometer CMOS ICs From basics to ASICs. NY.: Springer. 2008.
  9. Bhunia S., Mukhopadhyay S. Low-Power Variation-Tolerant Design in Nanometer Silicon. NY: Springer. 2010.
  10. Girard P., Nicolici N., Wen X. Power-Aware Testing and Test Strategies for Low Power Devices. NY: Springer. 2009.
  11. Royannez P., et al. 90 nm low leakage SoC design techniques for wireless applications // IEEE Solid-State Circuits Conference Digest of Technical Papers. Feb. 2005. P. 138-589.
  12. Gammie G., et al. SmartReflex Power and Performance Management Technologies for 90 nm, 65 nm, and 45 nm Mobile Application Processors // Proc. of IEEE. 2010. V. 98. № 2.
    P.144-159.
  13. Kwong, Y. Ramadass, N. Verma, and Chandrakasan A. A 65 nm sub-Vt microcontroller with integrated SRAM and switched capacitor DC-DC converter // IEEE J. Solid-State Circuits. Jan. 2009. V. 44. № 1. P. 115-126.
  14. Wang A., Calhoun B.H., Chandrakasan A.P. Sub-Threshold Design for Ultra Low-Power Systems. NY: Springer. 2006.
  15. Khanna S. Calhoun B.H. Serial sub-threshold circuits for ultra-low-power systems // Proc. Int. Symp. Low Power Electron. Design. Aug. 2009. P. 27-32.
  16. Mair H., et al. A 65-nm mobile multimedia applications processor with an adaptive power management scheme to compensate for variations // IEEE Symp. VLSI Circuits, 2007. P. 224-225.
  17. Sadi M., Karmakar N., Alam K. Dual Sleep Approach to Vlsi Design. Munich: VDM Verlag. 2010.
  18. Jun S., Insup S., Youngsoo S. Synthesis and implementation of active mode power gating circuits// 47th ACM/IEEE Design Automation Conference (DAC). 2010. P. 487-492.
  19. Synopsys Eclypse Low Power Solution [Электронный ресурс] // Synopsys, Inc.: [сайт]. [2009]. URL: http://www.synopsys.com/Solutions/ (дата обращения: 06.12.2011).
  20. Roy K., Kulkarni J. P., Hwang M.-E. Variations-Aware Low-Power Design and Block Clustering With Voltage Scaling // IEEE Transactions on Very Large Scale Integration Systems. 2007. V.15. № 7. P. 42-45.