350 rub
Journal Nanotechnology : the development , application - XXI Century №2 for 2012 г.
Article in number:
Nanotechnology for Nanoelectronics: Nanogap Fabrication in Metal Nanowire by Focused Ion Beam
Authors:
I.V. Sapkov, V.V. Kolesov, E.S. Soldatov
Abstract:
Method of nanogap-s fabrication in narrow thin-film metal nanowire using maskless technology of focused ion beam is suggested and realized. It was shown that in one technological cycle it is possible to fabricate nanоgap with width about 30 nm during 50 seconds process per one nanogap. It is shown that usage of focused ion beam technology for decreasing of nanowire-s cross-section allows to get desirable geometrical parameters of electrodes, which are acceptable for further application in fabrication of tunnel nanostructures with «overhanging» electrodes system. It is shown that during gap-s fabrication in the case of gold nanowires there is a redeposition of metal near electrode-s edges. This effect is absent during gap-s fabrication in the case of titanium nanowires and because of milling duration (about 50 sec) there is better process monitoring than for gold (duration of process is about 3 sec). These results point at the titanium as a preferred material for fabrication of nanotransistors with «overhanging» electrodes. Thus, it was shown that fabricated nanostructures such as metal nanowires braked with narrow nanogap can be used as a signal electrodes for electronic nanodevices on the base single molecules or nanoparticles.
Pages: 4-12
References
  1. Moore G.E. // Electronics Magazine. 1965. V. 38. № 8. P. 4.
  2. Ribes G.R., Roy M., D. Roux J.M. // IEEE International Conference on IC Design and Technology (ICICDT). 2008. P. 91.
  3. The International Technology Roadmap for Semiconductors. 2010.
  4. Tsu R. // Nanotechnology. 2001. V. 12. № 14. P. 625.
  5. Likharev K.K. // IBM Journal of Research and Development. 1988. V. 32. № 1. P. 144.
  6. Petty M. C. Molecular Electronics: From Principles to Practice. Chichester: John Wiley and Sons Ltd. 2007.
  7. Bumm L.A., Arnold J.J., Cygan M.T. et al. // Science. 1996. V. 271. P. 1705.
  8. Donhauser Z.J., Mantooth B.A., Kelly K.F. et al. // Science. 2001. V. 292. P. 2303.
  9. He J., Sankey O., Lee M., et al. // Faraday Discuss. 2006. V. 131. P. 145-154.
  10. Hines T., Diez-Perez I., Hihath J., et al. // Journal of American Chemical Society. 2010. V. 132. №33. P. 11658.
  11. Reed M.A., Zhou C., Muller C.J., Burgin T.P., Tour J.M. // Science. 1997. V. 278. № 5336. P. 252.
  12. Tao N.J. // Nature Nanotech. 2006. V. 1. P. 173.
  13. Park H., Lim A.K.L., Alivisatos A.P., Park J., McEuen P. L. // Appl. Phys. Lett. 1999. V. 75. № 12. P.301.
  14. Lambert M.F., Goffman M.F., Bourgoin J.P., Hesto P. // Nanotechnology. 2003. V. 14. № 7. P. 772.
  15. Prins F., Hayashi T., de Vos van Steenwijk B.J.A. // Appl. Phys. Lett. 2009. V. 94.
  16. Strachan D.R., Smith D.E., Johnston D.E. // Appl. Phys. Lett. 2005. V. 86.
  17. Kervennic Y.V., Vanmaekelbergh D., Kouwenhoven L.P., van der Zant H.S.J. // Appl. Phys. Lett. 2003. V. 83.
  18. Fischbein M.D., Drndic´ M. // Nano Lett. 2007. V. 7. № 5. P. 1329.
  19. Blom T., Welch K., Strømme M., Coronel E., Leifer K. // Nanotechnology. 2007. V. 18.
  20. Xiang J., Liu B., Wu S.-T., et al. // Angewandte Chemie International Edition, 2005. V. 44. P. 1265.
  21. Sapkov I.V., Soldatov E.S., Elensky V.G. Method of creation of monomolecular transistor with overhanging electrodes (Proceedings Paper) // SPIE Proceedings. 2007. V. 7025.