350 rub
Journal Electromagnetic Waves and Electronic Systems №2 for 2023 г.
Article in number:
Estimation of the rotation period of a space object based on the results of effective scattering surface measurements
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202302-04
UDC: 621.396.96.96.1
Authors:

А.V. Zuzin1, Y.V. Slobchov2, А.Y. Slobchov3, V.О. Korolev4

1Yaroslavl Higher Military School of Air Defense (Yaroslavl, Russia)

2Joint-Stock Company "A.L. Mints Radio Engineering Institute" (Moscow, Russia)

3Interstate Joint-Stock Corporation "Vimpel" (Moscow, Russia)

4A.F. Mozhaisky Military Space Academy (Saint-Petersburg, Russia)

Abstract:

When recognizing a space object (CO) at the stage of forming a dictionary of features, the problem arises of estimating the period of rotation of the CO, which, under conditions of strict periodicity of fluctuations of the reflected signal, a known diagram of the effective scattering surface (ESS), a sampling interval multiple of the rotation period and a non-moving CO relative to the radar, is solved by known methods. However, under conditions other than those indicated – with an unknown arbitrary reflection diagram of the CO, the problem may not be solved, that is, the rotation period of the CO may not be determined. To develop a methodology for determining the rotation period of the CO by the implementation of EPR measurements at the stage of forming a dictionary of signs of recognition of the CO with the required quality indicators without a priori data on the EPR of the CO. A model of ESS measurement results has been developed, representing an additive mixture of reflected signal and measurement errors. The statistical problem of determining the presence of a periodic component in an additive mixture of the reflected signal and measurement errors is posed and solved - the distribution law of a random variable d (statistical measure) is determined, which allows for an arbitrary assumed value of the period with the required errors to confirm the fact of its presence and using threshold processing to obtain its estimate. The variants of estimating the true rotation period of the CO are presented. The presented methodology for estimating the rotation period of the spacecraft based on the results of measurements of its ESS under the assumption of an unknown reflection diagram, non-strict periodicity of fluctuations and the absence of the influence of the rotation of the spacecraft relative to the radar makes it possible to detect and evaluate the fact of rotation of the spacecraft with the required quality indicators without a priori data on the EPR of the spacecraft, and to increase the accuracy of estimating its true rotation period used as a sign of recognition.

Pages: 29-35
For citation

Zyuzin A.V., Slobtsov A.Yu., Slovtsov Yu.V., Korolev V.O. Estimation of the rotation period of a space object based on the results of effective scattering surface measurements // Electromagnetic waves and electronic systems. 2023. V. 28. № 2. P. 29−35. DOI: https://doi.org/10.18127/j15604128-202302-04 (in Russian)

References
  1. Ladygin A.I. Analiz signatur. M.: Universitetskaya kniga. 2008. (in Russian)
  2. Pat. № 2046359. 1995. Poligarmonicheskii predskazyvayushchii filtr. Slobtsov Yu.V., Krasnogorov S.I., Zyuzin A.V., Ivanets G.V. (in Russian)
  3. Kramer G. Matematicheskie metody statistiki. M.: Mir. 1975. (in Russian)
  4. Serebryannikov M.G., Pervozvanskii A.A. Vyyavlenie skrytykh periodichnostei. M. 1965. (in Russian)
  5. Radar Cross Section Handbook. V. 1, 2. N.Y.: Plenum Press. 1970. (in Russian)
  6. Beletskii V.V. Dvizhenie ISZ vokrug tsentra mass. M.: Radio i svyaz. 1978. (in Russian)
  7. Aksenov O.Yu., Veniaminov S.S., Yakubovskii S.V. Vozmozhnosti sploshnogo radiolokatsionnogo polya SPRN po nablyudeniyu kosmicheskikh ob'ektov. Ekologicheskii vestnik nauchnykh tsentrov ChES. 2017. № 4. Vyp. 2. (in Russian)
  8. Gorelik A.L., Barabash Yu.L., Krivosheev O.V. i dr. Selektsiya i raspoznavanie na osnove radiolokatsionnoi informatsii. Pod red. A.L. Gorelika. M.: Radio i svyaz. 1990. 240 s. (in Russian)
  9. Sergunov K.Yu. Primenenie prostranstvenno-raznesennykh radiolokatsionnykh stantsii dlya resheniya zadach selektsii. Vestnik Kontserna PVO "Almaz-Antei". 2015. 1(13). (in Russian)
  10. Ubozhenko D.Yu. Modelirovanie polucheniya ob'ektno-vremennykh realizatsii otrazhennykh radiosignalov ot kosmicheskikh ob'ektov. Sb. materialov III Vseros. nauchno-praktich. konf. "Voprosy kontrolya khozyaistvennoi deyatelnosti i finansovogo audita, natsionalnoi bezopasnosti, sistemnogo analiza i upravleniya". Moskva. 29 dekabrya 2017 g. FGBNU "Analiticheskii tsentr" Minobrnauki Rossii. M.: Federalnoe gosudarstvennoe byudzhetnoe nauchnoe uchrezhdenie "Ekspertno-analiticheskii tsentr". 2018. S. 195−198. EDN VSXRXG. (in Russian)
  11. Ubozhenko D.Yu., Zakutaev A.A., Shirobokov V.V. Issledovanie voprosov unifikatsii kalibrovochnogo obespecheniya kvantovo-opticheskikh i radiolokatsionnykh sredstv. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2021. № 6. S. 244−250. DOI 10.24412/2071-6168-2021-6-244-250. (in Russian)
  12. Chebotar I.V., Gudaev R.A., Kulikov S.V., Smirnov M.S., Lizan V.M. Metodika otsenivaniya oshibki prognozirovaniya polozheniya elementov kosmicheskogo musora po rezultatam soprovozhdeniya radiolokatsionnym informatsionnym sredstvom. Elektromagnitnye volny i elektronnye sistemy. 2022. T. 27. № 2. S. 39−47. DOI: https://doi.org/10.18127/j15604128-202201-05 (in Russian)
Date of receipt: 23.02.2023
Approved after review: 09.03.2023
Accepted for publication: 20.03.2023