350 rub
Journal Electromagnetic Waves and Electronic Systems №4 for 2022 г.
Article in number:
Vertical CMOS nanotransistors with a conical channel for three-dimensional integrated circuits
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202204-09
UDC: 621.382.323
Authors:

Н.В. Masalsky1

1 Federal State Institution "Scientific Research Institute for System Analysis of RAS" (Moscow, Russia)

Abstract:

The issues of numerical simulation of low-voltage logic gates based on silicon vertical CMOS nanotransistors with a surrounding gate with a conical working area for three-dimensional integrated circuits are discussed. The use of the shape of the working area in the form of a truncated cone in comparison with the usual cylindrical shape improves the electrophysical characteristics and allows you to compensate for the limitations that arise as a result of scaling. The shape of the cone is set as follows. From the source side for a large diameter, the condition for suppressing short-channel effects is not met, and from the drain side for a small diameter, it is fulfilled. Numerical studies of conical prototypes were carried out using mathematical modeling performed using the TCAD instrument technological modeling program based on 3D models of n- and p-types of nanotransistors developed by TCAD in this work. The simulation results demonstrate that the electrophysical characteristics of the conical structure in the control voltage range from 0 to 0.6 V are characterized by a higher transistor current, a maximum Ion/Ioff current ratio, a low leakage current and a slope of the subthreshold characteristic close to the theoretical aisle. For an optimized ratio of the diameters of the working area of 7.9/9.6 nm and the length of the working area of 22 nm, the 3D architecture of the inverter and adder modulo 2, consisting of vertically arranged transistors of n- and p-types, is studied. 3D TCAD models of devices have been developed and their electro-physical characteristics have been numerically investigated at control voltages of 0.6 V and a frequency of 25 GHz. The inverter model predicts a maximum switching delay of 1.3 ps, the maximum level of active power of 0.2 MW, static 5 MW. The adder model predicts a maximum switching delay of 3.3 ps, a limit level of active power of 0.82 MW, static 20.2 MW. The promising characteristics of the proposed transistors, such as a high degree of integration, high performance (high speed and low power consumption) and low cost, open the way to the development of 3D integrated circuits of the next generation.

Pages: 64-72
For citation

Masalsky Н.В. Vertical CMOS nanotransistors with a conical channel for three-dimensional integrated circuits. Electromagnetic waves and electronic systems. 2022. V. 27. № 4. P. 64−72. DOI: https://doi.org/10.18127/j15604128-202204-09 (in Russian)

References
  1. Waldrop M.M. The chips are down for Moore's law.. Nature. 2016. V. 530. № 7589. P. 144−151.
  2. Nanoelectronics: Devices, Circuits and Systems. Editor by Kaushik B.K. Elsevier. 2018. 476 p.
  3. International Technology   Roadmap for Semiconductors (ITRS) Interconnect. Edition 2020. https://irds.ieee.org/editions/2020. access data 15.01.2021.
  4. Ferain I., Colinge C.A., Colinge J. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature. 2011. V. 479. P. 310−316.
  5. Neamen D. Semiconductor physics & devices: basic principles. New York. McGaw-Hill. 2011. 784 p.
  6. Tomar G., Barwari A. Fundamental of electronic devices and circuits. Springer. Singapure.2019. 246 p.
  7. Lu W. Nanowire transistor performance limits and applications. IEEE Trans. on Electron Devices. 2008. V. 55. № 11. P. 2859−2876.
  8. Savio A., Monfray S., Charbuillet C., Skotnicki T. On the limitations of silicon for I-MOS integration. IEEE Trans. Electron Devices. 2009. V. 56. № 5. P. 1110−1117.
  9. Karthigai Pandian M., Balamurugan N.B. Analytical threshold voltage modeling of surrounding gate silicon nanowire transistors with different geometries. J Electric Eng Technol. 2014. V. 9. № 6. P. 742−751.
  10. Jaeger R.C., Blalock T.N. Microelectronic circuit design. McGraw-Hill. New York. 2011. 1190 p.
  11. Chiang T.K. A new quasi-3-D compact threshold voltage model for Pi-gate MOSFETs with the interface trapped charges. IEEE Trans. on Nanotechnology. 2015. V. 14. № 3. P. 555−560.
  12. Gao H.W., Wang Y.H., Chiang T.K. A quasi-3-D scaling length model for trapezoidal FinFET and Its application to subthreshold behavior analysis. IEEE Trans. on Nanotechnology. 2017. V. 16. № 2. P. 281−289.
  13. Sharma D., Vishvakarma S.K. Precise analytical model for short channel cylindrical gate (CylG) gate-all-around (GAA) MOSFET. Solid. State. Electron. 2013. V. 86. № 1. P. 68−74.
  14. Masal’skii N.V. Modeling the CMOS characteristics of a completely depleted surrounding-gate nanotransistor and an unevenly doped working region. Rus. Microelectronics. 2019. V. 48. № 6. P. 394−398.
  15. Majzoub S., Taouil M., Hamdioui S. System-level sub-20 nm planar and FinFET CMOS delay modelling for supply and threshold voltage scaling under process variation. J. of Low Power Electron. 2019. V. 15. № 1. P. 1−10.
  16. TCAD Sentaurus Device. https://www.synopsys.com/silicon/tcad/device-simulation/sentaurus-device.hlmt. access data 15.03.2021.
  17. Samoju V.R., Mahapatra K., Tiwari P.K. Analytical modeling of subthreshold characteristics by considering quantum confinement effects in ultrathin dual-metal quadruple gate (DMQG) MOSFETs. Superlattices Microstruct. 2017. V. 111. P. 704−713.
  18. Shin Y.H., Bae M., Park C., Park J., Park H., Lee Y., Yun I. Universal core model for multiple-gate field-effect transistors with short channel and quantum mechanical effects. Semiconductor Science and Technology. 2018. V. 33. № 6. P. 065010.
  19. IC STMicroelectronics 28nm Advanced CMOS FDSOI 8 ML. https://mycmp.fr/datasheet/ic28nm-cmos28fdsoi. Access 12 June 2020).
  20. Yoon J.S., Jeong E.Y., Baek C.K., Kim Y.R., Hong J.H., Lee J.S., Baek R.H., Jeong Y.H. Junction design strategy for Si bulk FinFETs for system-on-chip applications down to the 7-nm node. IEEE Trans. Electron Dev. Lett. 2015. V. 36. № 10. P. 994−996.
  21. Sachid A.B., Tosun M., Desai S.B., Hsu C.Y., Lien D.H., Madhvapathy S.R., Chen Y.Z., Hettick M., Kang J.S., Zeng Y. Monolithic 3D CMOS using layered semiconductors . Adv. Mater. 2016. V. 28. P. 2547−2554.
  22. Yu Y.S., Panth S., Lim S.K. Electrical coupling of monolithic 3‑D inverters. IEEE Trans. Electron Devices. 2016. V. 63. P. 3346−3349.
  23. Ahn T.J., Perumal R., Lim S.K., Yu Y.S. Parameter extraction and power/performance analysis of monolithic 3‑D inverter (M3INV). IEEE Trans. Electron Devices. 2019. V. 66. P. 1006−1011.
  24. Myunghwan R., Bien F., Kim Y. Optimal inverter logic gate using 10‑nm doublegate-all-around (DGAA) transistor with asymmetric channel width. AIP Advances. 2016. V. 6. P. 015311.
Date of receipt: 09.06.2022
Approved after review: 27.06.2022
Accepted for publication: 27.07.2022