350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2022 г.
Article in number:
Methodology for technical diagnostics of navigation equipment for consumers of the global navigation satellite system of an unmanned aerial vehicle using a barometric altimeter
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604128-202201-07
UDC: 621.396.967.2
Authors:

V.V. Kiryushkin¹, S.S. Tkachenko², E.E. Stryapchev³

¹ JSC RIE «PROTEK» (Voronezh, Russia)

²,³ Military Air Academy named after professor N.E. Zhukovsky and Yu.A. Gagarin (Voronezh, Russia)

Abstract:

During operation, the navigation equipment of consumers of the global navigation satellite system of an unmanned aerial vehicle is exposed to destabilizing factors that can reduce its performance and, in the worst case, render it inoperable. Particularly dangerous destabilizing factors include deliberate imitation interference, transmitting false coordinate-time navigation information. This type of interference cannot be detected by standard means of technical diagnostics, and their effect leads to a latent failure of the navigation equipment of the global navigation satellite system consumers. Thus, the task of increasing the reliability of technical diagnostics of navigation equipment for consumers of the global navigation satellite system as an integral part of the coordinate-time navigation support system for complexes with unmanned aerial vehicles under the influence of deliberate imitation interference is relevant and practically significant. One of the possible ways to increase the reliability of technical diagnostics of consumer navigation equipment is based on the use of external information from a barometric altimeter. Development of a methodology for technical diagnostics of navigation equipment for consumers of the global navigation satellite system of an unmanned aerial vehicle using information from a barometric altimeter.

A methodology for technical diagnostics of navigation equipment for unmanned aerial vehicle consumers has been developed. Methodology based on identifying the discrepancy between the relative altitude gains determined using the global navigation satellite system, on the one hand, and the barometric altimeter, on the other hand, when performing a control altitude maneuver. The proposed methodology makes it possible to reduce the dependence of the developed solution on the influence of meteorological conditions and, as a result, to increase the reliability of technical diagnostics of navigation equipment for unmanned aerial vehicle consumers.

The developed methodology for technical diagnostics of the navigation equipment of consumers of the global navigation satellite system in practice provides the required reliability of technical diagnostics, determined by the conditional probability of undetected failure. In this case, the time required to issue a failure message during diagnostics is significantly less than the time interval determined by the requirements for the integrity of the global navigation satellite system.

Pages: 55-64
References
  1. Fetisov V.S. Bespilotnaya aviatsiya: terminologiya, klassifikatsiya, sovremennoe sostoyanie. Ufa: FOTON. 2014. S. 104−113. (in Russian)
  2. Grebenikov A.G. i dr. Obshchie vidy i kharakteristiki BLA: Spravochnoe posobie. Kh.: Natsionalnyi aerokosmicheskii universitet «KhAI». 2008. 377 s. (in Russian)
  3. Radionavigatsionnyi plan Rossiiskoi Federatsii, utverzhdennyi prikazom Minpromtorga Rossii ot 4 sentyabrya 2019 g. № 3296. Moskva 2019. (in Russian) (in Russian)
  4. Romanov A.S., Turlykov P.Yu. Issledovanie vliyaniya imitiruyushchikh pomekh na apparaturu potrebitelei navigatsionnoi informatsii. Trudy MAI. Vypusk № 86. M.: 2016. 8 s. (in Russian)
  5. Tkachenko S.S., Stryapchev E.E., Kiryushkin V.V. Algoritm kontrolya dostovernosti navigatsionnykh izmerenii navigatsionnoi apparatury potrebitelya bespilotnogo letatelnogo apparata na osnove obrabotki informatsii ot lokalnoi kontrolno-korrektiruyushchei stantsii. Teoriya i tekhnika radiosvyazi. 2020. № 4. S. 31−35. (in Russian)
  6. Tkachenko S.S., Stryapchev E.E., Kiryushkin V.V. Algoritm kontrolya dostovernosti navigatsionnykh izmerenii navigatsionnoi apparatury potrebitelya bespilotnogo letatelnogo apparata pri deistviyakh v gruppe. Teoriya i tekhnika radiosvyazi. 2021. № 1. S. 78−84. (in Russian)
  7. Tkachenko S.S., Stryapchev E.E., Kiryushkin V.V., Cherepanov D.A. Metodika tekhnicheskogo diagnostirovaniya navigatsionnoi apparatury potrebitelya globalnoi navigatsionnoi sputnikovoi sistemy bespilotnogo letatelnogo apparata s ispolzovaniem informatsii ot vneshnikh istochnikov. Radiotekhnika. 2021. T. 85. № 6. S. 67−76. DOI: https://doi.org/10.18127/j00338486-202106-12. (in Russian)
  8. GOST 20911-89. Tekhnicheskaya diagnostika. Terminy i opredeleniya. M.: 2009. 9 s. (in Russian)
  9. Perov A.I., Kharisov V.N. GLONASS. Printsipy postroeniya i funktsionirovaniya. M.: Radiotekhnika. 2005. S. 476−480. (in Russian)
  10. Venttsel E.S. Teoriya veroyatnostei: Uchebnik dlya studentov vuzov. Izd. 9-e, ster. M.: Izdatelskii tsentr «Akademiya». 2003. 576 s. (in Russian)
  11. Babich O.A. Obrabotka informatsii v navigatsionnykh kompleksakh. M.: Mashinostroenie. 1991. 512 s. (in Russian)
  12. Tikhonov V.I., Kharisov V.N. Statisticheskii analiz i sintez radiotekhnicheskikh ustroistv i sistem. Uchebnoe posobie dlya vuzov. Izd. 3-e. M.: Goryachaya liniya – Telekom. 2015. 607 c. (in Russian)
Date of receipt: 01.12.2021
Approved after review: 14.12.2021
Accepted for publication: 12.01.2022