А.А. Yanovskaya1, Е.М. Glukhovskiy2, А.I. Egorov3
1-3 Moscow Institute of Physics and Technology (State University) (Dolgoprudny, Russia)
Congenital deafness affects the communication necessary for the formation of a functional sensory system, which leads to a deficit in the learning of oral speech. Cochlear implants bypass the damage to the cochlea by directly stimulating the auditory nerve and brain, thus avoiding many of the harmful effects of sensory deprivation.
Goal of the work is to consider the perception of sound loudness in cochlear implantation systems.
The structure of the human auditory analyzer and the perception of sound are briefly described. The main causes of sensorineural hearing loss are considered. The relationship between the physical component of sound and the perception of loudness has been revealed. The authors have shown the existence of time and mechanical limitations for sensitive periods of cochlear implantation, and also described the effects of multimodal and cognitive reorganization resulting from prolonged auditory deprivation.
The fundamentals of the structure of the auditory analyzer, necessary for understanding the operation of cochlear implantation technology, were discussed. Several methods have also been investigated to determine the TL and MCL thresholds. A relationship was found between the loudness of the sound and the amplitude of the electric current.
Yanovskaya А.А., Glukhovskiy Е.М., Egorov А.I. The loudness perception in the cochlear implant system. Electromagnetic waves and electronic systems. 2021. V. 26. № 5. P. 41−49. DOI: https://doi.org/10.18127/j15604128-202105-05 (in Russian)
- Informatsionnyi byulleten vsemirnoi organizatsii zdravookhraneniya. Glukhota i poterya slukha. URL = https://www.who.int/ru/newsroom/fact-sheets/detail/deafness-and-hearing-loss [dostup 20.12.2020]. (in Russian)
- Postanovlenie Pravitelstva RF ot 20.02.2006 № 95. O poryadke i usloviyakh priznaniya litsa invalidom. (red. ot 14.11.2019). URL = https://gb2mgn74.ru/uploads/files/postanovlenie_pravitelstva_rf_ot_20.02.2006_n_95_red._ot_21.06.2018_o_poryadke_i_uslov iyah_priznaniya_lica_invalidom.pdf [dostup 20.11.2020]. (in Russian)
- Palchun V.T., Kryukov A.I. Otorinolaringologiya. M.: GEOTAR-Media. 2013. 361 s. (in Russian)
- Informatsionnyi portal Trud–Ekspert. Upravlenie. Statistika neirosensornoi tugoukhosti v chisle profzabolevanii, svyazannykh s vozdeistviem fizicheskikh faktorov. URL = https://www.trudcontrol.ru/press/statistics/6660/statistika-neyrosensornoy-tugouhosti-vchisle-profzabolevaniy-svyazannih-s-vozdeystviem-fizicheskih-faktorov [dostup 22.12.2020]. (in Russian)
- Tavartkiladze G.A., Gvelesiani T.G. Klinicheskaya audiologiya. M.: NTsAiS. 2003. 74 s. (in Russian)
- Shulgovskii V.V. Fiziologiya vysshei nervnoi deyatelnosti s osnovami neirobiologii: uchebnik dlya studentov vuzov. Izd. 2-e, ispr. i dop. M.: Akademiya. 2008. 478 s. (in Russian)
- Fiziologiya cheloveka. Pod red. G.I. Kossitskogo. M.: Meditsina. 1985. 544 s. (in Russian)
- Azadpour M., McKay C.M., Svirsky M.A. Effect of pulse rate on loudness discrimination in cochlear implant users. Journal of the Association for Research in Otolaryngology. 2018. V. 19. № 3. P. 287−299.
- Bayat A. Comparison of Neural Response Telemetry and Electrical Stapedius Reflexes with Behavioral Thresholds in Cochlear Implant Users. Asian Journal of Pharmaceutics (AJP). 2018. V. 12. № 3. DOI: http://dx.doi.org/10.22377/ajp.v12i03.2656.
- Buss E., Labadie R., Brown C., Gross A. Outcome of cochlear implantation in pediatric auditory neuropathy. Otology & Neurotology. 2002. V. 23. № 3. P. 328−332.
- Deep N.L., Dowling E.M., Jethanamest D., Carlson M.L. Cochlear implantation: an overview. Journal of Neurological Surgery Part B: Skull Base. 2019. V. 80. № 2. P. 169−177. DOI: 10.1055/s-0038-1669411.
- Fancourt D., Finn S. What is the evidence on the role of the arts in improving health and well-being? A scoping review. Copenhagen: WHO Regional Office for Europe. 2019.
- Gibson W.P.R., Graham J.M. Auditory neuropathy and cochlear implantation – myths and facts. Cochlear Implants International. 2008. V. 2008. P. 1−7. DOI: https://doi.org/10.1179/cim.2008.9.1.1.
- Greenberg S., Ainsworth W.A. Speech processing in the auditory system: an overview. Speech processing in the auditory system. NY: Springer. 2004. 308 p.
- Hoppe U., Rosanowski F., Iro H., Eysholdt U. Loudness perception and late auditory evoked potentials in adult cochlear implant users. Scandinavian Audiology. 2001. V. 30. № 2. P. 119−125. DOI: 10.1080/010503901300112239.
- Lai W. An NRT Cookbook: Guidelines for Making NRT Measurements. Version 2.04. Cochlear AG. 1999.
- Halmagyi C.M., Cremer P.D., Curthoys I.S. Textbook of audiological medicine clinical aspects of hearing and balance. London: Martin Dunitz. 2003. 956 p.
- Martin D., William F. House, inventor of pioneering ear-implant device, dies at 89. The New York Times. 2012. 15: 2012.
- Mehta A.H., Oxenham A.J. Vocoder simulations explain complex pitch perception limitations experienced by cochlear implant users.
- Journal of the Association for Research in Otolaryngology. 2017. V. 18. № 6. P. 789−802. DOI: https://doi.org/10.1007/s10162-0170632-x.
- Pisoni D.B., Kronenberger W.G., Harris M.S., Moberly A.C. Three challenges for future research on cochlear implants. World journal of otorhinolaryngology-head and neck surgery. 2017. V. 3. № 4. P. 240−254. DOI: https://doi.org/10.1016/j.wjorl.2017.12.010.
- Shallop J.K., Peterson A., Facer G.W., Fabry L.B., Driscoll C.L. Cochlear implants in five cases of auditory neuropathy: postoperative findings and progress. The Laryngoscope. 2001. V. 111. № 4. P. 555−562. DOI: https://doi.org/10.1097/00005537-200104000-00001.
- Shannon R.V. Threshold and loudness functions for pulsatile stimulation of cochlear implants. Hearing research. 1985. V. 18. № 2. P. 135−143. DOI: https://doi.org/10.1016/0378-5955(85)90005-X.
- Shearer A.E., Hildebrand M.S., Smith R.J.H. Hereditary hearing loss and deafness overview. GeneReviews®[Internet]. Washington: Seattle. 2017.
- Swanson B.A. Pitch perception with cochlear implants. PhD thesis. Faculty of Medicine, Dentistry and Health Sciences, Otolaryngology Eye and Ear Hospital, The University of Melbourne. 2008. 300 p. URL = http://hdl.handle.net/11343/39587.
- Denans N., Baek S., Piotrowski T. Comparing Sensory Organs to Define the Path for Hair Cell Regeneration. Annual Review of Cell and Developmental Biology. 2019. V. 35. P. 567−589. DOI: https://doi.org/10.1146/annurev-cellbio-100818-125503.
- Van den Borne B., Snik A.F.M., Mens L.H.M., Brokx J.P.L., Van den Broek P. Stapedius reex measurements during surgery for cochlear implantation in children. Am. J. Otol. 1996. V. 7. № 1. P. 554−558.
- O'Leary M.J., Fayad J., House A.T., Linthicum F.H. Jr. Electrode insertion trauma in cochlear implantation. Annals of Otology, Rhinology & Laryngology. 1991. V. 100. № 9. P. 695−699. DOI: https://doi.org/10.1177/000348949110000901.
- Rance G., Beer D.E., Cone-Wesson B., Shepherd R.K., Dowell R.C., King A.M., Rickards F.W., Clark G.M. Clinical findings in a group of infants and young children with auditory neuropathy. Ear Hear. 1999. V. 20. № 3. P. 238−252.
- Seewald R.C., Ross M., Spiro M.K. Selecting amplification characteristics for young hearing-impaired children. Ear Hear. 1985. V. 6. P. 48−53.