350 rub
Journal Electromagnetic Waves and Electronic Systems №4 for 2021 г.
Article in number:
Features of adjustment of the cochlear implantation system during operation and in postoperative period
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604128-202104-02
UDC: 534.773.2
Authors:

А.I. Egorov1, Е.М. Glukhovskiy2

1,2 Moscow Institute of Physics and Technology (State University)

Abstract:

Background. Hearing restoration is an important process to ensure patient comfort and socialization of a person in society (especially a child). So, the purpose of this study was to identify the possibility of monitoring the function of the cochlear in cochlear implantation, as well as to determine the peculiarities of setting up the cochlear implantation system during surgery and the postoperative period. Results. The article demonstrates the possibility of monitoring the cochlea function during the cochlear implantation process, as well as setting up the cochlear implantation system. The authors have demonstrated options for traumatization during surgery and, accordingly, complete hearing loss. The possibilities of avoiding such effects are also considered.

Practical application. A deep study of the cochlear implantation process and all kinds of complications during surgery allows researchers and practitioners to avoid mistakes that will certainly affect the quality of life of patients.

Pages: 12-24
For citation

Egorov А.I., Glukhovskiy Е.М. Features of adjustment of the cochlear implantation system during operation and in postoperative period. Electromagnetic waves and electronic systems. 2021. V. 26. № 4. P. 12−24. DOI: https://doi.org/10.18127/j15604128-20210402 (in Russian)

References
  1. Summerfield A.Q., Marshall D.H., Davis A.C. Cochlear implantation: demand, costs, and utility. Ann. Otol. Rhinol. Laryngol. Suppl. 1995. V. 166. P. 245−248.
  2. Cochlear implants in adults and children. NIH Consens Statement 2015; 13:1Y30. URL = https://consensus.nih.gov/1995/ 1995cochlearimplants100html [Accessed 22.03.2021].
  3. Cope Y., Totten C.L. Fitting and programming the external system. In Cochlear Implants for Young Children, 2nd ed. London, U.K.: Whurr. 2017.
  4. Walravens E., Mawman D., O’Driscoll M. Changes in psychophysical parameters during the first month of programming the Nucleus Contour and Contour Advance cochlear implants. Cochlear Implants Int. 2006. V. 7. № 1. P. 15−32. DOI: 10.1179/cim.2006.7.1.15.
  5. Roditi R.E., Poissant S.F., Bero E.M., Lee D.J. A predictive model of cochlear implant performance in postlingually deafened adults. Otol. Neurotol. 2009. V. 30. № 4. P. 449−454. DOI: 10.1097/MAO.0b013e31819d3480.
  6. Spahr A.J., Dorman M.F. Effects of minimum stimulation settings for the Med El Tempo+ speech processor on speech understanding. Ear Hear. 2005. V. 26. P. 2S−6S. DOI: 10.1097/00003446-200508001-00002.
  7. Boyd P.J. Effects of programming threshold and maplaw settings on acoustic thresholds and speech discrimination with the MED-EL COMBI 40+ cochlear implant. Ear Hear. 2006. V. 27. № 6. P. 608−618. DOI: 10.1097/01.aud.0000245815.07623.db.
  8. Fallon J.B., Irvine D.R., Shepherd R.K. Cochlear implants and brain plasticity. Hear Res. 2008. V. 238. № 1−2. P. 110−117. DOI: 10.1016/j.heares.2007.08.004.
  9. Dawson P.W., Skok M., Clark G.M. The effect of loudness imbalance between electrodes in cochlear implant users. Ear Hear. 1997. V. 18. № 2. P. 156−165. DOI: 10.1097/00003446-199704000-00008.
  10. Sainz M., De la Torre A., Roldan C., Ruiz J.M., Vargas J.L. Analysis of programming maps and its application for balancing multichannel cochlear implants. Int. J. Audiol. 2003. V. 42. № 1. P. 43−51. DOI: 10.3109/14992020309056084.
  11. Abbas P.J., Brown C.J., Shallop J.K., Firszt J.B., Hughes M.L., Hong S.H., Staller S.J. Summary of results using the Nucleus CI24M implant to record the electrically evoked compound action potential. Ear Hear. 1999. V. 20. № 1. P. 45−59. DOI: 10.1097/00003446199902000-00005.
  12. Brown C.J., Abbas P.J., Fryauf-Bertschy H., Kelsay D., Gantz B.J. Intraoperative and postoperative electrically evoked brainstem responses in Nucleus cochlear implant users: implications for the fitting process. Ear Hear. 1994. V. 15. № 2. P. 168−176. DOI: 10.1097/00003446-199404000-00006.
  13. Hodges A.V., Balkany T.J., Ruth R.A., Lambert P.R., Dolan-Ash S., Schloffman J.J. Electrical middle ear muscle reflex: use in cochlear implant programming. Otolaryngol. Head Neck Surg. 1997. V. 117. № 3−1. P. 255−261. DOI: 10.1016/s0194-5998(97)70183-9.
  14. Mason S.M., Gibbin K.P., Garnham C.W., O’Donoghue G.M., Twomey T. Intraoperative electrophysiological and objective tests after cochlear implantation in a young child. Br. J. Audiol. 1996. V. 30. № 2. P. 67−70. DOI: 10.3109/03005369609077933.
  15. Allum J.H.J., Greisiger R., Probst R. Relationship of intraoperative electrically evoked stapedius reflex thresholds to maximum comfortable loudness levels of children with cochlear implants. Int. J. Audiol. 2002. V. 41. № 2. P. 93−99. DOI: 10.3109/14992020209090399.
  16. McKay C.M., Fewster L., Dawson P. A different approach to using neural response telemetry for automated cochlear implant processor programming. Ear Hear. 2005. V. 26. № 4. P. 38S−44S. DOI: 10.1097/00003446-200508001-00006.
  17. Smoorenburg G.F., Willeboer C., Van Dijk J.E. Speech perception in nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds. Audiol. Neurootol. 2002. V. 7. № 6. P. 335−347. DOI: 10.1159/000066154.
  18. Govaerts P.J., Daemers K., Yperman M., De Beukelaer C., De Saegher G., De Ceulaer G. Auditory speech sounds evaluation (A(section)A): a new test to assess detection, discrimination and identification in hearing impairment. Cochlear Implants Int. 2006. V. 7. № 2. P. 92−106. DOI: 10.1179/146701006807508106.
  19. Daemers K., Yperman M., De Beukelaer C., De Saegher G., De Ceulaer G., Govaerts P.J. Normative data of the A(section)E discrimination and identification tests in preverbal children. Cochlear Implants Int. 2006. V. 7. № 2. P. 107−116. DOI:
  20. 10.1179/146701006807508089.

  21. Poole D., Mackworth A.K., Goebel R. Computational Intelligence: A Logical Approach. Oxford: Oxford University Press. 1998.
  22. Russell S.J., Norvig P. Artificial Intelligence. A Modern Approach: 3rd ed. NJ: Prentice Hall. 2009.
  23. Shepherd R.K., Clark G.M., Pyman B.C., Webb R.L. Banded intracochlear electrode array: Evaluation of insertion trauma in human temporal bones. Ann. Otol. Rhinol. Laryngol. 1985. V. 94. № 1. P. 55−59. DOI: 10.1177/000348948509400112.
  24. Richter B., Aschendorff A., Lohnstein P., Husstedt H., Nagursky H., Laszig R. The Nucleus Contour electrode array: a radiological and histological study. Laryngoscope. 2001. V. 111. № 3. P. 508−514. DOI: 10.1097/00005537-200103000-00023.
  25. Nadol J.B. Jr, Shiao J.Y., Burgess B.J., Ketten D.R., Eddington D.K., Gantz B.J., Kos I., Montandon P., Coker N.J., Roland J.T. Jr, Shallop J.K. Histopathology of cochlear implants in humans. Ann. Otol. Rhinol. Laryngol. 2001. V. 110. № 9. P. 883−891. DOI: 10.1177/000348940111000914.
  26. Eshraghi A.A., Yang N.W., Balkany T.J. Comparative study of cochlear damage with three perimodiolar electrode designs. Laryngoscope. 2003. V. 113. № 3. P. 415−419. DOI: 10.1097/00005537-200303000-00005.
Date of receipt: 04.05.2021
Approved after review: 01.06.2021
Accepted for publication: 25.06.2021