350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2020 г.
Article in number:
Method for recording non-thermal microwave radiation from the human brain
DOI: 10.18127/j15604128-202003-05
UDC: 621.396
Authors:

L.I. Brusilovsky – General Director of ELBRUS Corporation LLC (Moscow)
E-mail: netsrv@aha.ru
A.S. Bryukhovetsky – Dr.Sc.(Med.), Professor, General Director of 
Clinic of Interventional Neurology and Restorative Therapy Neurovita Closed Joint-Stock Company (Moscow) E-mail: neurovita-as@mail.ru
S.P. Kozhin – Head of Laboratory,
JSC NPP Istok named after Shokina (Fryazino, Moscow Region)
P.G. Serafimovich – Dr.Sc.(Phys.-Math.), Senior Research Scientist,
Institute of Image Processing Systems RAS (Samara)
A.V. Nikonorov – Dr.Sc.(Eng.), Professor, Head of Department, Leading Research Scientist,  Institute of Image Processing Systems RAS (Samara)

Abstract:

At present, in the scientific world, a quantum-mechanical model is adopted to explain the nature of matter. The idea of this model is also important for understanding the nature of consciousness, which is directly related to the study of the structure and functioning of the human brain. Purpose – to conduct an experimental verification by an initiative team of physicians and radio engineers of the scientific hypothesis of Professor A.S. Bryukhovetsky that the higher nervous activity of humans and animals is associated not with electromagnetic processes in the cerebral cortex, but with the interaction of electromagnetic radiation (EMR) in the cerebrospinal fluid paths between the soft, arachnoid and dura mater of the human brain (GMP), covering the bones of the human skull [7, 27–29]. Since 2016, non-invasive studies of their own EMR GMF have been carried out in a wide frequency range from 850 MHz to 26.5 GHz in a protected environment of an anechoic shielded chamber of the 1st class of protection according to GOST R 50414-92 with specialized measuring equipment - the latest generation spectrum analyzer with high sensitivity and high speed of registration of electromagnetic radiation, specialized measuring antennas and low-noise amplifying equipment. Previously unknown microwave EMP of the UHF / microwave range (1.5 ... 4.5 GHz) with a signal power of (130 ... 100) dBm (e− 15 ... e−13 W) having zonal differences in different areas of the head were recorded person and absent from other parts of the body of the subjects. The method of registering microwave electromagnetic activity of the human brain is patented [9].
Registration of microwave radiation of GMP opens up a new information channel for its diagnosis. It will allow developing and creating appropriate instruments for real-time analysis of microwave bioelectric activity of GMFs under normal and pathological conditions, for diagnosing a number of functional and emotional states of a person and a number of mental disorders and mental diseases, for creating a new information channel for biocontrol of the human brain, the brain neurointerface –Computer and feedback systems on the GMP.

Pages: 37-54
For citation

Brusilovsky L.I., Bryukhovetsky A.S., Kozhin S.P., Serafimovich P.G., Nikonorov A.V. Experimental studies of microwave electromagnetic activity of human brain. Electromagnetic waves and electronic systems. 2020. V. 25. № 3. P. 37−56. DOI: 10.18127/j15604128-202003-05. (in Russian)

References
  1. Betskii O.V. Millimetrovye volny v biologii i meditsine. Radiotekhnika i elektronika. 1993. T. 38. № 10. S. 1760−1782. (in Russian)
  2. Brusilovskii L.I., Bryukhovetskii A.S. Issledovaniya sobstvennykh mikrovolnovykh izluchenii golovnogo mozga cheloveka v kognitivnykh protsessakh. I Vseros. konf. s mezhdunar. uchastiem «Fizika i ekologiya elektromagnitnykh izluchenii». 25−30 sentyabrya 2017. p. Agoi, Krasnodarskii krai. conf.biophys.ru/archive/agoi-2017.pdf#page=10. (in Russian)
  3. Brusilovskii L.I., Bryukhovetskii A.S. Issledovaniya sobstvennykh mikrovolnovykh izluchenii golovnogo mozga cheloveka.  Nauchnye trudy VIII Mezhdunar. kongressa «Slabye i sverkhslabye polya i izlucheniya v biologii i meditsine». Izd-vo OOO «PTs «Sintez». 2018. T. 8. 196 s. eLIBRARY ID: 35571420, https://elibrary.ru/item.asp-id=35609388. (in Russian)
  4. Brusilovskii L.I., Bryukhovetskii A.S. Issledovaniya mikrovolnovykh izluchenii golovnogo mozga cheloveka. Sb. nauchnykh trudov VI s'ezda biofizikov Rossii. Sochi. 2019. T. 1. S. 369−370. (in Russian)
  5. Brusilovskii L.I., Bryukhovetskii A.S. Otkrytie mikrovolnovogo informatsionnogo kanala dlya sozdaniya neirokompyuternogo interfeisa novogo tipa. Doklad na Mezhdunar. voenno-tekhnicheskom forume «ARMIYa-2019», sektsiya VIT ERA, 27 maya 2019. (in Russian)
  6. Brusilovskii L.I., Bryukhovetskii A.S. Razrabotka tekhnologii mikrovolnovoi entsefalografii (MWEG) dlya diagnostiki nervnykh zabolevanii i psikhicheskikh rasstroistv golovnogo mozga cheloveka, izuchenie aktivnosti cheloveka v norme i organizatsiya novogo tipa neirokompyuternogo interfeisa. Mezhdunar. simpozium IEEE «Obrabotka video i audio signalov v kontekste neirotekhnologii». SPCN2017. Sankt-Peterburg. 2017. (in Russian)
     
  7. Bryukhovetskii A.S. Problemy teoreticheskoi nevrologii. Informatsionno-kommutativnoe ustroistvo i printsipy raboty mozga cheloveka. M.: Izd-vo Poligraf-Plyus. 2014. 330 s. (in Russian)
  8. Bryukhovetskii A.S., Brusilovskii L.I. Neirotekhnologiya neinvazivnoi transkranialnoi diagnostiki mikrovolnovykh elektromagnitnykh izluchenii v mezhobolochechnom likvornom prostranstve golovy cheloveka pri reflektornoi i kognitivnoi deyatelnosti golovnogo mozga: ot teorii k eksperimentu, nauchnym faktam i ikh prakticheskoi realizatsii. Mezhdunar. nauchnaya konf. teoreticheskikh i prikladnykh razrabotok «Nauchnye razrabotki – evraziiskii region». M.: Izd-vo Infiniti. 2019. 136 s. ISBN 978-5-905695-44-5. (in Russian)
  9. Patentnaya zayavka RF №2017126117/14 ot 20.07.2017. Sposob registratsii mikrovolnovoi elektromagnitnoi aktivnosti golovnogo mozga cheloveka. Bryukhovetskii A.S., Brusilovskii L.I. (in Russian)
  10. Godik E.E. Fizicheskie polya biologicheskikh ob'ektov. Kibernetika zhivogo: Biologiya i informatsiya. M.: Nauka. 1984. S. 111−116. (in Russian)
  11. Devyatkov N.D., Goland M.B., Betskii O.V. Millimetrovye volny i ikh rol v protsessakh zhiznedeyatelnosti. Millimetrovye volny v biologii i meditsine (M.: Radio i svyaz). 1991. 168 s. 1992. № 1. 1993. № 2. (in Russian)
  12. Illarionov S.V. Teoriya poznaniya i filosofiya nauki. Rossiiskaya politicheskaya entsiklopediya (ROSSPEN). Filosofy Rossii XX veka. M.: 2007. 535 s. ISBN 5-8243-0766-0. (in Russian)
  13. Kazakov D.I. Puteshestvie v mikromir s fizikom-teoretikom. Lektsiya 03.10.2018, https://www.youtube.com/watch-v=A6V4JGiJd9Q.
  14. Maryutina T.M., Ermolaev O.Yu. Vvedenie v psikhofiziologiyu. – 2-e izd., ispr. i dop. M.: Moskovskii psikhologo-sotsialnyi institut: Flinta. 2001. 400 s. (in Russian)
  15. Mozg i psikhicheskie protsessy, https://studbooks.net/1329112/psihologiya/mozg_i_psihicheskie_protsessy. (in Russian)
  16. Pavlov I.P. Lektsii o rabote bolshikh polusharii golovnogo mozga. Izd-vo Akademii Nauk SSSR. 1949. (in Russian)
  17. Perminov A.V., Faizrakhmanova I.S. Prikladnaya golografiya. Kurs lektsii. Perm: Permskii natsionalnyi issledovatelskii politekhnicheskii universitet. 2017. (in Russian)
  18. Povorinskii A.G., Zabolotnykh V.A. Posobie po klinicheskoi elektroentsefalografii. In-t fiziologii im. I.P. Pavlova AN SSSR. L.: Nauka. Leningradskoe otdelenie. 1987. 64 s. (in Russian)
  19. Redozubov A.D. Logika myshleniya. https://habr.com/en/post/214109/. (in Russian)
  20. Sinitsyn P.P., Petrosyan V.P., Elkin V.A. i dr. Osobaya rol sistemy «millimetrovye volny – vodnaya sreda» v prirode. Biomeditsinskaya radioelektronika. 1998. № 1. S. 5−23. (in Russian)
  21. Teorii pamyati. Morfologicheskie teorii. 2008. http://blogmedika.ru/2008/11/16/morfologicheskie-teorii/. (in Russian)
  22. Fiziologiya s osnovami anatomii: Uchebnik. Pod red. A.I. Tyukavina, V.A. Chereshneva, V.N. Yakovleva M.: NITs INFRA-M. 2016. 574 s. ISBN 978-5-16-011002-8. (in Russian)
  23. Shulgovskii V.V. Osnovy neirofiziologii. Ucheb. posobie. Izd. 2-e. M.: KnoRus. 2017. 272 s. (in Russian)
  24. Arlot S., Celisse A., Harchaoui Z. Kernel change-point detection. arXiv preprint arXiv. 2012. 1202.3878. 1(0000): 1–26.
  25. Bai J., Perron P. Critical values for multiple structural change tests. Econometrics Journal. 2003. 6(1). 72−78.
  26. Bai J. Vector autoregressive models with structural changes in regression coefficients and in variance–covariance matrices. Annals of Economics and Finance. 2000. 1: 303−339.
  27. Breier J.I. et al. Lateralization of cerebral activation in auditory verbal and non-verbal memory tasks using magnetoencephalography. Brain Topography. 1999. V. 12. P. 89−97.
  28. Bryukhovetskiy A.S. Human Brain Theory. Information-Commutation Device of the Brain and Principles of its Work and Modeling. NewYork: Nova Science Publisher. 2016. 220 p.
  29. Bryukhovetskiy A.S. Information Communicative Organization of Brain and Its Functional Princeples. IANR VII & 1st SCSI with 11th GCNN & 2nd IFNR Conference. 27 February – 1 March. Mumbai. 2014. P. 36.
  30. Bryukhovetskiy A.S. Novel theory of the human brain: information-commutation basis of architecture and principles of operation. Journal of Neurorestoratology. February 2015. V. 3. P. 39–55. DOI http://dx.doi.org/10.2147/JN.S75126. Approved for publication by Prof. Dr. Hari Shanker Sharma.
  31. Karagiannaki K., Panousopoulou A., Tsakalides P. An online feature selection architecture for Human Activity Recognition. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017. P. 2522−2526.
  32. Killick R., Fearnhead P., and Eckley I.A. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association. 2012. 107(500): 1590−1598.
  33. Musk E.R. Neuralink Launch Event 07/16/2019. https://www.youtube.com/watch-v=YKzCD2IEYUQb 17.07.2019.
  34. Nirenberg S. Research Interests. https://physiology.med.cornell.edu/faculty/nirenberg/lab/research.php.
  35. Pang E.W. et al. Localization of auditory N1 in children using MEG: source modeling issues. International Journ. of Psychophysiology. 2003. V. 51. P. 27−35.
  36. Pascual-Marqui R.D., Michel C.M., Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journ. of Psychophysiology. 1994. V. 18. P. 49−65.
  37. Pascual-Marqui R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 2002. V. 24. P. 5−12.
  38. Pribram K.H. Languages of the brain; experimental paradoxes and principles in neuropsychology. M.: Progress. 1975. 464 p.
  39. Talbot M.J. The Holographic Universe. Sofia Publishing House. 2016. 384 s.
  40. Zemel R.S. Cortical Belief Networks. Computational Models for Neuroscience. Thomas McKenna Robert hecht-Nielsen. Springer. 2003. P. 267−285.
  41. https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_common_library. dl_brochures_and_datasheets /pdf_1. HL050S7_cat_2015 _142-143.pdf.
Date of receipt: 9 апреля 2020 г.