350 rub
Journal Electromagnetic Waves and Electronic Systems №9 for 2019 г.
Article in number:
Spectral representation for the periodic averaging of a continuous periodic signal using of discrete Fourier transform
Type of article: scientific article
DOI: 10.18127/j15604128-201909-08
UDC: 621.391.8
Authors:

Т.Ya. Shevgunov – Ph.D. (Eng.), Associate Professor,

Moscow Aviation Institute (National Research University)

E-mail: shevgunov@gmail.com

О.А. Guschina – Post-graduate Student,

Moscow Aviation Institute (National Research University) E-mail: busya_03@mail.ru

Abstract:

In this paper, the spectral representation of the periodic synchronous averaging is considered. The exact analytical expression which connects the coefficients of Fourier series of original continuous time signal with the discrete time Fourier trans-form of the averaged sampled version was obtained taking into consideration all the effects such as difference between the true and averaging periods, the attenuation and the leakage. The results of the numerical simulation are presented for the periodic train of pulses. The chosen example shows that the waveform of the recovered signal can significantly differ from one period of the original signal, despite rather a slight difference in values between the true and averaging periods. It was identified in the presented paper that the difference  between the original and averaged signals measured by means of relative mean square error raises if the total signal observation length increases while the other parameters remains fixed.

Pages: 67-74
References
  1. Shuster A. On the investigation of hidden periodicities with application to a supposed 26 day period of metrological phenomena. Journal of Geophysical Research.1898. V. 3. № 1. 1898. P. 13–41.
  2. Buys-Ballot Les Changements Periodiques de Temperature, Utrecht. 1847.
  3. Javorskyj I., Yuzefovych R., Matsko I., Zakrzewski Z., Majewski J. Coherent covariance analysis of periodically correlated random processes for unknown non-stationarity period. Digital Signal Processing. 2017. V. 65. Elsevier. P. 27–51.
  4. Javorskyj I., Yuzefovych R., Matsko I., Zakrzewski Z., Majewski J. Statistical analysis of periodically non-stationary oscillations for unknown period. Proceedings of 2017 MIXDES, Bydgoszcz, 2017. P. 543–546. 
  5. Javorskyj I., Leśkow J., Kravets I., Isayev I., Gajecka E. Linear filtration methods for statistical analysis of periodically correlated random processes – Part I: Coherent and component methods and their generalization. Signal Processing. 2012. V. 92. № 7.  P. 1559–1566. Rezhim dostupa: https://doi.org/10.1016/j.sigpro.2011.09.030.
  6. Javorskyj I., Leśkow J., Kravet, I., Isayev I., Gajecka E. Linear filtration methods for statistical analysis of periodically correlated random processes – Part II: Harmonic series representation. Signal Processing. 2011. V. 91. № 11. P. 2506–2519.
  7. Fomby T.B. Buys Ballot Plots: Graphical Methods for Detecting Seasonality in Time Series. 2008. 
  8. Iwueze I.S., Nwogu E.C., Johnson O., Ajaraogu J.C. Uses of the Buys-Ballot Table in Time Series Analysis. Applied Mathematics. 2011. V. 2. № 5. P. 633–645.
  9. Gardner W.A. Statistical spectral analysis. A nonprobabilistic theory. Prentice Hall. New Jersey. 1988.
  10. Gardner W.A., Napolitano A., Paura L. Cyclostationarity. Half a century of research. Sig. Process. 2006. V. 86. № 4. P. 639–697. Rezhim dostupa: https://doi.org/10.1016/j.sigpro.2005. 06.016.
  11. Hurd H.L., Miamee A. Periodically Correlated Random Sequences: Spectral Theory and Practice. Wiley-Interscience. 2007.
  12. Shevgunov T. A comparative example of cyclostationary description of a non-stationary random process. J. Phys.: Conf. Ser. 2019. № 1. P.1–6. Rezhim dostupa: https://doi.org/10.1088/1742-6596/1163/1/012037.
  13. Efimov E.N., Shevgunov T.Ya., Kuznetsov Yu.V. Otsenka tsiklicheskoy spektral'noy plotnosti moshchnosti infokommunikatsionnykh signalov. Trudy MAI. № 97. M.: MAI. 2017. C. 14. Rezhim dostupa: http://trudymai.ru/published.php?ID=87294. (In Russian).
  14. Shevgunov T.Ya., Efimov E.N., Zhukov D.M. Algoritm 2N-BPF dlya otsenki tsiklicheskoy spektral'noy plotnosti moshchnosti. Elektrosvyaz'. 2017. № 6. M.: Info-Elektrosvyaz'. S. 50–57. (In Russian).
  15. Efimov E.N., Shevgunov T.Ya., Zhukov D.M. Analiz tsiklostatsionarnykh radiosignalov s ispol'zovaniem Realtek RTL2832U i freymvorka Qt. Elektrosvyaz'. 2018. № 12. M.: Info-Elektrosvyaz'. S. 43–47. (In Russian).
  16. Sibert U.M. Tsepi, signaly, sistemy. V 2-kh chastyakh. M.: Mir. 1988. (In Russian).
  17. Vityazev V.V. Mnogoskorostnaya obrabotka signalov. M.: Izd-vo «Goryachaya liniya-Telekom». 2017. (In Russian).
  18. Oppengeym A.V., Shafer R.V. Tsifrovaya obrabotka signalov. Izd. 3-e, ispr. M.: Tekhnosfera. 2012. (In Russian).
  19. Marple S.L.Jr. Digital Spectral Analysis: With Applications. Prentice Hall. 1987.
Date of receipt: 11 октября 2019 г.