I.A. Konnikov – Dr.Sc.(Eng.), Saint Petersburg
E-mail: konnikov_i@mail.ru
The article presents a technique for mathematical modeling the monochromatic field created in a flat-layered medium by a horizontal current, the field being described with the wave equation; the technique is oriented to the solution of problems of microelectronics. Analytical expressions for Green’s function for the small distance domain are obtained. The suggested solution is based on an employment of an earlier suggested and approved method of the equivalent propagation constant which enables to decrease the amount of the computation to a considerable degree if compared to other techniques based on the strict dynamic approach. A modification of a method for modeling the horizontal and/or vertical components of a monochromatic field created in a planelayered medium by a horizontal current is set out, the field being described with the wave equation. The modification is oriented at and intended for solving design problems of microelectronics, i.e., for small distances. The proposed modification is based upon an employment of the proposed and verified earlier technique of the equivalent propagation constant which enables to reduce the solving in the wave equation to the solving in the Laplace equations for the electric and magnetic potentials of the field and thus enables to decrease the amount of computations if compared to other techniques based upon a strict dynamic approach. Analytical expressions of Green’s function for the small distance domain are obtained.
- Frank F.R. Differenczial’ny’e i integral’ny’e uravneniya matematicheskoj fiziki. Chast’ 2. Mizes. M.: L.: ONTI. 1937. 1000 s.
- Ming-Ju Tsai, Chinglung Chen, Nicolaos G. Alexopoulos. Sommerfeld integrals in modeling interconnects and micristrip elements in multi-layered media // Electromagnetics. 1998. V. 18. № 3. P. 267−288.
- Jackson D.R., Alexopoulos N.G. An asymptotic extraction technique for evaluating Sommerfeld-type integrals // IEEE Transactions on Antenna Propagation. 1986. V. AP-34. № 12. P. 1467−1470.
- Kechiev L.N. Proektirovanie pechatny’x plat dlya czifrovoj by’strodejstvuyushhej apparatury’. M.: OOO «Gruppa IDT». 2007. 616 s.
- Dionisios Margetis, Tai Tsun Wu. Exactly calculable field components of electric dipoles in planar boundary // Journal of mathematical physics. February 2001. V. 42. № 2. P.713−745.
- Konnikov I.A. Metod rascheta monoxromaticheskogo polya v sloistoj srede // Zhurnal texnicheskoj fiziki. 2013. № 10. S. 8−12.
- Konnikov I.A. Matematicheskoe modelirovanie perekrestnoj pomexi v SAPR // Informaczionny’e texnologii. 2013. № 4. S. 2−8.
- Konnikov I.A. Modelirovanie e’lektromagnitny’x navodok v SAPR e’lektronny’x modulej // Vestnik MGTU im. N.E’. Baumana. Ser. Priborostroenie. 2007. № 4(69). S. 3−20.
- Sommerfeld A. Partial differential equations in physics. N.Y.: Academic Press Inc. 1949. 335 p.
- Konnikov I.A. Matematicheskaya model’ konstrukczii mikrosxemy’ // Matematicheskoe modelirovanie. 2007. T. 19. № 4. S. 37−44.
- Panovskij V., Filips M. Klassicheskaya e’lektrodinamika. M.: Gl. red. fiz.-mat. lit-ry’. 1968. 432 s.
- Stre’tton Dzh. A. Teoriya e’lektromagnetizma. M.; L.: OGIZ. 1948. 540 s.
- Lavrov G.A., Knyazev A.S. Prizemny’e i podzemny’e antenny’. M.: Sov. radio. 1965. 260 s.
- Konnikov I.A. K raschetu kvazistaczionarnogo polya v zadachax e’lektroniki. Metod rascheta // Peterburgskij zhurnal e’lektroniki. 2013. № 3. S. 97−104.
- Konnikov I.A. Ispol’zovanie raznostnoj matematicheskoj modeli dlya rascheta polya v sloisty’x sredax // Prikladnaya fizika i matematika. 2014. № 3. S. 39−50.
- Kufud O. Zondirovanie metodom soprotivlenij. M.: Nedra. 1984. 270 s.
- Govorkov V.A. E’lektricheskie i magnitny’e polya. M., L.: Gose’nergoizdat. 1960. 464 s.