350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2017 г.
Article in number:
Complex-and hyper-model standard parts of control systems. Part 2. Mathematical apparatus for four-dimensional systems
Authors:
E.V. Klimanova - Post-graduate Student, Department «Computer systems and networks», Kaluga branch of the Bauman MSTU E-mail: e.v.klimanova@yandex.ru A.V. Maksimov - Ph. D. (Eng.), Associate Professor, Department «Computer systems and networks», Kaluga branch of the Bauman MSTU E-mail: av_maximov@bk.ru E.A. Maksimova - Assistant, Department «Computer systems and networks», Kaluga branch of the Bauman MSTU E-mail: eam@mail333.com S.E. Stepanov - Ph. D. (Phys.-Math.), Associate Professor, Department «Higher Mathematics», Kaluga branch of the Bauman MSTU E-mail: stepanov@bmstu-kaluga.ru
Abstract:
The work examines features of typical units transfer functions modeling in the quaternion basis. The work is a logical extension of the first part, in which the mathematical apparatus for simulating two-dimensional control systems in the basis of complex input-output functions was justified. Special attention is paid to the presentation of quaternionic functions. It is shown that the use of algebraic notation of quaternions and functions does not allow obtaining new information on the control system structure. The block diagram of a four-channel control system using a matrix quaternion transfer function is a fully coupled system, whereas when using a conventional transfer function, a system with four separated unconnected control channels. There is also a special attention paid to the justification of the choice for matrices of imaginary quaternion units. As there is a large number of variants for matrices of quaternion imaginary units available to the developer, but their effectiveness is still poorly understood. An example of a control system formation scheme is given. It is concluded that the adopted mathematical apparatus will allow to successfully develop and investigate the transfer functions of multidimensional standard units.
Pages: 22-29
References

 

  1. Kurosh A.G. Kurs vysshejj algebry. M.: Nauka. 1968. 433 s.
  2. Vinberg EH.B. Kurs algebry. Izd. 3-e , dopoln. M.: MCNMO. 2017. 592 s.
  3. Karataev E.A. Preobrazovanie giperkompleksnykh chisel. M.: SOLON-PRESS. 2016. 300 s.
  4. Furmanov JA.A., Kreveckijj A.V., Rozhencev A.A. i dr. Kompleksnoznachnye i giperkompleksnye sistemy v zadachakh obrabotki mnogomernykh signalov / Pod red. JA.A. Furmanova. M.: FIZMATLIT. 2004. 456 s.
  5. Branec V.N., SHmyglevskijj I.P. Primenenie kvaternionov v zadachakh orientacii tverdogo tela. M.: Nauka. 1973. 320 s.
  6. Jack B. Kuipers. Quaternions and rotation sequences: a primer with applications to orbit, aerospace, and virtual reality. Publisheg Princeton University Press. 2002.
  7. Klimanova E.V., Maksimov A.V., Maksimova E.A. Kompleksnoznachnye i giperkompleksnye modeli tipovykh zvenev sistem upravlenija. CHast 1. Matematicheskijj apparat dlja dvumernykh sistem // EHlektromagnitnye volny i ehlektronnye sistemy. 2016. T. 21. № 9. S. 66−72.
  8. Maksimova E.A. Osobennosti matrichnojj formy predstavlenija kompleksnykh chisel // Arkhivarius. 2016. № 10(14). S. 75−81.
  9. Besekerskijj V.A., Popov E.P. Teorija sistem avtomaticheskogo regulirovanija. Izd. 3-e, ispr. M.: Nauka. 1970. 768 s.
  10. Metody klassicheskojj i sovremennojj teorii avtomaticheskogo upravlenija. T. 1: Matematicheskie modeli, dinamicheskie kharakteristiki i analiz sistem avtomaticheskogo upravlenija / Pod red. K.A. Pupkova, N.D. Egupova. M.: Izd-vo MGTU im. N.EH. Baumana. 2004. 656 s.
  11. Matrichnye metody rascheta i proektirovanija slozhnykh sistem avtomaticheskogo upravlenija dlja inzhenerov / Pod red. K.A. Pupkova i N.D. Egupova. M.: Izd-vo MGTU im. N.EH. Baumana. 2007. 664 s.