350 rub
Journal Electromagnetic Waves and Electronic Systems №9 for 2016 г.
Article in number:
Magnetism and surface currents superconducting ball
Authors:
I.N. Aliev - Dr. Sc. (Phys.-Math.), Professor, National Research Nuclear University «MEPhI» (Moscow) E-mail: alievprof@yandex.ru D.G. Melikyants - Bachelor, Bauman Moscow State Technical University E-mail: Lion_paint@mail.ru
Abstract:
As is well known at the present time, a coherent theory of the phenomenon of superconductivity should be quantum, but the pheno-menological electrodynamics of superconductors can be built on the basis of classical concepts, and, despite major successes in the explanation of the phenomenon of superconductivity, the elementary classical theory requires substantial refinements and improvements. With that said, it is important to re-examine the basic laws of electrodynamics, for example, the current distribution on the surface of the superconducting ball, and the magnitude of the magnetic induction. To do this, outside of the ball field is calculated in the standard way with the help of Maxwell\'s equations. The main physical conclusion the obtained result is the following: in a superconductor placed in an external magnetic field there are superficial currents distributed in a thin layer of finite thickness, which was previously interpreted as the depth of penetration of the magnetic field with the corresponding volume currents. In the previous work of the authors it was shown that the constant current in the conductor of any type are pushed to the surface along with the magnetic field, which leads to the so-called surface current. This current is considered as voluminous, but flowing in a thin layer of finite thickness. And, as this thickness depends on the material and nature of the conductor, we can assume that it is about the typical depth of magnetic field penetration in the superconductor according to the theory of London.
Pages: 13-19
References

 

  1. Kravchenko V.F. EHlektrodinamika sverkhprovodjashhikh struktur. Teorija. Algoritmy i metody vychislenijj. M.: Fizmatlit. 2006. 280 s.
  2. Maksimov E.G. Problema vysokotemperaturnojj sverkhprovodimosti. Sovremennoe sostojanie // UFN. 2000. T. 170. № 10. S. 1033−1061.
  3. Ginzburg V.L. Phys.Lett. 13. 101. 1964.
  4. London F. a H. The electromagnetic equations of the supracondactor. Proc. Roy. Soc. 1935. V. 149 .P. 71−88.
  5. Gorter C.J., Casimir H. On supracondactivity. Physica. 1934. V. 1. P. 306−320.
  6. Kravchenko V.F., CHaplin A.F. Osesimmetrichnoe vozbuzhdenie sverkhprovodjashhejj sfery // DAN. 1992. T. 327. № 2 S. 208−211.
  7. Aliev I.N., Melikjanc D.G. O namagnichivanii sverkhprovodjashhego shara // Vestnik MGTU. Ser. Estestvennye nauki. 2016. № 3(66). S. 82−92.
  8. Aliev I.N., Kopylov I.S. Primenenie metoda mnozhitelejj Lagranzha k vychisleniju magnitnogo polja postojannogo toka. Dinamika slozhnykh sistem. 2015. № 4. S. 3−10.
  9. Aliev I.N., Kopylov I.S. Ispolzovanie formalizma monopolejj Diraka v nekotorykh zadachakh magnetizma // Vestnik MGTU. Ser. Estestvennye nauki. 2015. № 6. S. 25−39.
  10. Kubo R. Termodinamika. M. Mir. 1970. 304 s.
  11. Tinkkham M. Vvedenie v sverkhprovodimost. M.: Atomizdat. 1980. 310 s.
  12. SHmidt V.V. Vvedenie v fiziku sverkhprovodnikov. M.: MCNMO. 2000. 402 s.
  13. Pajjerls R. Kvantovaja teorija tverdykh tel. M.: IIL. 1956. 257 s.
  14. Linton EH., Mak-Lin U. Sverkhprovodniki II roda // Uspekhi fizicheskikh nauk. 1969. T. 97. № 3. S. 495−523.
  15. Aliev I.N., Kopylov I.S. Ob ehlektrodinamike modeli Londonov i dvukhzhidkostnojj teorii Gortera-Kaziamira // Poverkhnost. 2017. № 1. S. 1−9.
  16. London H. Phase-equilibrium of supracondactors in a magnetic field // Proc. Roy. Soc. 1935. V. 152. P. 650−663.
  17. Savchenko A.O., Savchenko O.JA. Poverkhnostnye toki sverkhprovodjashhego osesimmetrichnogo tela, ehkranirujushhie vneshnee magnitnoe pole // ZHTF. 2007. T. 77. № 7. S. 130−133.
  18. Rudnev I.A., Osipov M.A., Podlivaev A.I., Pokrovskijj S.V. Vizualizacija protekanija ehlektricheskogo toka v provodjashhikh strukturakh s primeneniem tekhniki magnito-silovojj mikroskopii // Poverkhnost. 2015. № 9. S. 19−26.
  19. Yurchenko S., Komarov K., Pustovoit V. Multilaer-graphene-based amplifier of surface acoustic waves. AIP advances 5. 057144. 2015.
  20. Dolganova I.N., Zaytsev K.I., Metelkina A.A., Karasik V.E., Yurchenko S.O. A hybrid continuous-wave terahertz imaging system // Review of Scientific Instruments. 2015. V. 86. Issue 11. Art. № 113704.