350 rub
Journal Electromagnetic Waves and Electronic Systems №8 for 2016 г.
Article in number:
Malyuzhinets function calculation for the impedance wedge diffraction problem
Authors:
V.V. Akhiyarov - Ph. D. (Eng.), Leading Research Scientist, SRI of Radioelectronic Technics of Bauman Moscow State Technical University
E-mail: vakhiyarov@gmail.com
Abstract:
Electromagnetic and acoustic wave scattering from a wedge is one of the key problems in the diffraction theory. Classical method of its solution is the field representation as Summerfeld integral. For the Dirichlet and Neumann boundary condition this problem has well known solution, in this case diffraction coefficient is calculated using simple trigonometric function. For the impedance boundary condition this problem have been solved by G.D. Maliuzhinets with the use of special function, which known as Maliuzhinets function.
In this article the simple approximations of Maliuzhinets function Θ(z) is discussed. It is shown that these approximations can-t provide high accuracy and it leads to diffraction coefficient error. A new method for function Θ(z) approximation based on double exponential transformation is suggested. The proposed formula is presented in the form of converges series. The relative estimation error for various approximations of Maliuzhinets function is produced. It is shown that the obtained in this work formula provides a much higher accuracy than known methods. The diffraction coefficient for impedance wedge obtained using proposed approximation is calculated and the relative estimation error is done.
Pages: 41-49
References
- Babich V.M., Ljalinov M.A., Grikurov V.EH. Metod Zommerfelda-Maljuzhinca v teorii difrakcii. SPb.: SPBGU. 2003. 104 s.
- Maljuzhinec G.D. Izluchenie zvuka kolebljushhimisja granjami proizvolnogo klina. CH. I // Akusticheskijj zhurnal. 1955. T. 1. № 2. S. 144−164.
- Zavadskijj V.JU., Sakharova M.P. O primenenii specialnojj funkcii yF(z) v zadachakh difrakcii voln v klinovidnykh oblastjakh // Akusticheskijj zhurnal. 1967. T. 13. № 1. S. 60−69.
- Osipov A.V., Norris A.N. The Malyuzhinets theory for scattering from wedge boundaries: a review // Wave Motion. 1999. V. 29. P. 313−340.
- Hongo K., Nakajima E. Polynomial approximation of Maliuzhinets? function // IEEE Trans. on AP. 1986. V. 34. № 7. P. 942−947.
- Osipov A.V. Vychislenie funkcii Maljuzhinca v kompleksnojj oblasti // Akusticheskijj zhurnal. 1990. T. 36. № 1. S. 116−121.
- Osipov A.V. A Simple Approximation of the Maluzhinets Function for Describing Wedge Diffraction // IEEE Trans. on AP. 2005. V. 53. № 8. P. 2773−2776.
- Herman M.I., Volakis J.L., Senior T.B.A. Analytic Expressions for a Function Occurring in Diffraction Theory // IEEE Trans. on AP. 1987. V. 35. № 9. P. 1083−1086.
- Aboserwal N.A., Balanis C.A. Closed-Form Expression of the Maliuzhinets Function using Tan-Sinh Quadrature Rule // Antennas and Propagation Society International Symposium. IEEE. Memphis. USA. 2014. 6−11 July. P. 2040−2041.
- Mori M., Sugihara M. The double-exponential transformation in numerical analysis // Journal of Computational and Applied Mathematics. 2001. V. 127. № 1. P. 287−296.
- Mori M. Quadrature formulas obtained by variable transformation and the DE‑rule // Journal of Computational and Applied Mathematics. 1985. V. 12−13. № 3. P. 119−130.
- Akhijarov V.V. Reshenie zadachi difrakcii na impedansnom kline // EHlektromagnitnye volny i ehlektronnye sistemy. 2008. T. 13. № 11. S. 19−27.