350 rub
Journal Electromagnetic Waves and Electronic Systems №7 for 2016 г.
Article in number:
Minimization of circuit complexity majority element
Authors:
A.S. Nikolaev - Ph. D. (Eng.), Associate Professor, Department «Computer systems and networks», Kaluga branch of the Bauman MSTU. E-mail: nikolanta@yandex.ru
Abstract:
The main problem by transmission of the discrete information on communication links is fight against the errors arising in communication links. At the same time it is noted that increase in the multiplicity corrected by the adjusting error state number sharply complicates the diagram of the decoder. It leads to the fact that because of complexity of implementation the created diagrams of decoders not completely use possibilities of codes on correction of errors. Now transition from an equipment room to program implementation of different devices is often made. The majority of algorithms of decoding were created for the hardware implementation. In case of program implementation of these methods sharp increase of quantity of commands of the computing device which need to be executed for correction of repeated errors is watched. An exception is the majority method of decoding. It differs in independence of number of the executed computation of a multiplicity of errors. The decoder of a majority code contains the register of shift, adders on the module two and a majority element. The most difficult element of the diagram is the majority element, especially, if it has many inputs. The quantity of inputs of a majority element defines a multiplicity of the error corrected by the decoder. Therefore creation of rather simple diagram of the majority element having a large number of inputs is the urgent task. The existing methods of minimization of logic functions are the universal therefore don\'t consider features of the minimized function. In case of minimization of functions with a large number of arguments complexity of execution of the procedure of minimization sharply increases and visualization of the carried-out actions disappears. Therefore classical methods of minimization have restrictions on quantity of arguments of the minimized function and not always lead to the simplest expression of a formula of function. The offered method of minimization considers features of a formula of a majority function. It allows to use in case of minimization the regular conversions which result is single-digit, unlike classical methods in which minimization process can go in several different ways. The offered method of minimization allows to receive simpler expressions and to minimize functions of bigger number of arguments.
Pages: 32-36
References
- Berlekehmp EH. Algebraicheskaja teorija kodirovanija: Per. s angl. / Pod red. S.D. Bermana. M.: Mir. 1971. 477 s.
- Piterson U., Uehldon EH. Kody, ispravljajushhie oshibki: Per. s angl. / Pod red. R.L. Dobrushina i I.S. Samojjlenko. M.: Mir. 1976. 594 s.
- Kassami T., Tokura N., Ivadari E., Inagaki JA. Teorija kodirovanija: Per. s japon. / Pod red. B.S. Cybakova i I.S. Gelfanda. M.: Mir. 1978. 576 s.
- F. Dzh. Mak-Viljams, N. Dzh. A. Sloehn. Teorija kodov, ispravljajushhikh oshibki: Per. s angl. / Pod red. L.A. Vassalygo. M.: Svjaz. 1979. 744 s.
- Dzh. Klark, ml., Dzh. Kehjjn. Kodirovanie s ispravleniem oshibok v sistemakh cifrovojj svjazi: Per. s angl. / Pod red. B.S. Cybakova. M.: Radio i svjaz. 1987. 391 s.
- Kolesnik V.D., Mironchikov E.T. Dekodirovanie ciklicheskikh kodov. M.: Svjaz. 1968. 252 s.
- Dzh. Messi. Porogovoe dekodirovanie: Per. s angl. / Pod red. EH.L. Blokha M.: Mir. 1966. 207 s.
- Dadaev JU.G. Teorija arifmeticheskikh kodov. M.: Radio i svjaz. 1981. 272 s.
- Karpov JU.G. Teorija avtomatov. SPb.: Piter. 2002. 206 s.
- Nikolaev A.S. Minimizacija mazhoritarnogo ehlementa v bazise I-ILI // Sb. statejj Mezhdunar. nauchno-prakt. konf. «Sovremennaja nauka: Teoreticheskijj i prakticheskijj vzgljad». 25 dekabrja 2014 g. V 2-kh chastjakh. CH. 2. Ufa, Aehterna. 2014. S. 54−56.