350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2016 г.
Article in number:
Microarc oxidation technique of creating nanostructures emitting laser discharge counters
Authors:
A.P. Korzhavyi - Dr. Sc. (Eng.), Professor, Kaluga branch of the Bauman MSTU. E-mail: fn2kf@list.ru V.K. Shatalov - Dr. Sc. (Eng.), Professor, Kaluga branch of the Bauman MSTU. E-mail: vkshatalov@yandex.ru
Abstract:
Description of the study on the creation of nanostructures with the oxide film, the surface of which has a predetermined microinho-mogeneity where recesses and protrusions are strictly periodic. Facing the category of dielectric (oxide) structured surface nanostructure such as a cold cathode gas discharge laser sensor has a low coefficient of dispersion, and therefore, highly durable. A new method of structuring the surface of the cold cathode using micro-arc oxidation. Nanostructures with periodic alternation of recesses and protrusions in the oxide film formed on the titanium substrate studied using modern analytical instrumentation. For registration of surface structures using atomic force microscopy (ACM) P 4 and P-SPM 47 (Solver) company NT MDT. First maximum scanning microscope was 16×16 micron, with a second microscope field examined dimensions up to 50×50 mm. In the study of the topography of sample measurements were made in either maintain a constant force (contact mode) or in the modulation mode (semicontact mode). In the first case, the probe is moved along the surface, and a feedback system to maintain a constant (about 10−8 N), the pressing force of the probe to the surface, in the second case, the same feedback system maintains a constant oscillation amplitude, which decreased by partial contact with the probe studied surface. Both allows you to take an image oxidized surface topography with a resolution down to the nanometer. It turned out that the semi-contact mode is less perturbs the surface being studied, which is important in the study of surfaces easily modifiable. Modes are given micro-arc oxidation in the preparation of nanostructures and specific structural and morphological characteristics of the surface facing the glow discharge.
Pages: 78-84
References

 

  1. Nikiforov D.K., Korzhavyjj A.P., Nikiforov K.G. EHmittirujushhie nanostruktury «metall-oksid metalla»: fizika i primenenie. / Pod red. A.P. Korzhavogo. M.: Izd-vo MGTU im. N.EH. Baumana. 2009. 156 s.
  2. Pat. RUS 2175804 18.05.2000. Gazovyjj lazer na tlejushhem razrjade. Kalistratova G.M., Kazakov V.N., Korzhavyjj A.P., Mareeva Z.G., Martynova T.F., Fomichev A.A., CHistjakov G.A.
  3. Pat. RUS 2126185. Sposob ocenki kachestva kholodnykh katodov. Goljaev JU.D., Kolbas JU.JU., Korzhavyjj A.P., Mash L.D., Prolejjko EH.P., SHitova N.A.
  4. Pat. RUS 2119218. Gazovyjj monoblochnyjj lazer. Demidenkov JU.V., Kazakov V.N., Kalistratova G.M., Kolbas JU.JU., Korzhavyjj A.P., Prolejjko EH.P., Skrockaja N.M., Skrockijj S.G., SHitova N.A.
  5. Pat. RUS 2009586. Gelijj-neonovyjj lazer. Prasickijj V.V., Korzhavyjj A.P., Lishhuk N.V., Rozhanec A.V.
  6. Korzhavyjj A.P., Marin V.P., Sigov A.S.Nekotorye aspekty sozdanija tekhnologijj i konstrukcijj izdelijj kvantovojj ehlektroniki // Naukoemkie tekhnologii. 2002. T. 3. № 4. S. 20.
  7. Sinelnikov A.O., Ermak E.M., Korzhavyjj A.P. Osobennosti zakhvata chastot v lazernom giroskope s chastotnojj podstavkojj na ehffekte Zeemana // Naukoemkie tekhnologii. 2012. T. 13. № 10. S. 40−45.
  8. KHvorostov V.I., Korzhavyjj A.P., Prolejjko EH.P. Vzaimozavisimosti osnovnykh parametrov kholodnykh katodov i tekhnologicheskikh rezhimov obrabotki v monoblochnykh gelijj-neonovykh lazerakh // Naukoemkie tekhnologii. 2012. T. 13. № 10. S. 46−52.
  9. Bondarenko G.G., Korzhavyjj A.P., Gacenko V.P., Marin V.P.Oksidnye plenki na poverkhnosti metalla: sovremennoe sostojanie issledovanijj i problemy prakticheskogo ispolzovanija // Fundamentalnye problemy radioehlektronnogo priborostroenija. 2008. T. 8. № 1. S. 170−176.
  10. Bondarenko G.G., Korzhavyi A.P.Influence of surface oxidation on the structure and properties of cold metal cathodes // Russian Physics Journal. 2007. T. 50. № 2. S. 125−133.
  11. Prolejjko EH.P., Korzhavyjj A.P. Opredelenie kachestva i sroka sluzhby kholodnykh katodov na osnove ehmittirujushhikh struktur «metall-diehlektrik» // Naukoemkie tekhnologii. 2010. T. 11. № 11. S. 22−28.
  12. Bondarenko G.G., Korzhavyjj A.P.Ionno-plazmennoe napylenie aljuminievykh i berillievykh pokrytijj na vnutrennie poverkhnosti polykh cilindricheskikh katodov // Metally. 1995. № 4. S. 167.
  13. Nejjn CHan. Plenochnye kholodnye katody dlja sovremennykh gelijj-neonovykh lazerov // Naukoemkie tekhnologii. 2014. T. 15. 660. S. 26−30.
  14. Korzhavyjj A.P.Materialy s vysokojj ustojjchivostju k raspyleniju na osnove legkikh metallov dlja kholodnykh istochnikov ehlektronov // Naukoemkie tekhnologii. 2001. T. 2. № 4. S. 29−32.
  15. Kristja V.I., JJe Naing Tun. Vlijanie oksidnojj plenki na poverkhnosti katoda na ehnergeticheskie raspredelenija ionov i bystrykh atomov v tlejushhem razrjade // Poverkhnost. Rentgenovskie, sinkhrotronnye i nejjtronnye issledovanija. 2015. № 3. S. 74−80.
  16. Kristja V.I., JJe Naing Tun. Modelirovanie vlijanija diehlektricheskojj plenki na poverkhnosti ehlektroda na perekhod tlejushhego razrjada v dugovojj// Izvestija RAN. Ser. Fizicheskaja. 2014. T. 78. № 6. S. 753−757.
  17. Kristja V.I., JJe Naing Tun. Raschet vklada ionov i bystrykh atomov v neodnorodnost raspylenija misheni s poverkhnostnym relefom v tlejushhem razrjade // Poverkhnost. Rentgenovskie, sinkhrotronnye i nejjtronnye issledovanija. 2014. № 3. S. 68−73.
  18. Gordienko P.S., Gnedenkov S.V. Mikrodugovoe oksidirovanie titana i ego splavov. Vladivostok: Dalnauka. 1997. 179 s.