350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2016 г.
Article in number:
Wavelet usage for preprocessing and characterization of cathodoluminescence spectra
Authors:
S.E. Stepanov - Ph. D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU. E-mail: stepanov@bmstu-kaluga.ru
E.Yu. Agu - Master, Post-graduate Student, Kaluga branch of the Bauman MSTU. E-mail: liza.kornyushina@gmail.com
V.Yu. Zakharov - Ph. D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU. E-mail: vladiyuz@mail.ru
Abstract:
Currently, with the development of advanced electronic materials and devices, there is a transition to nanostructures. Therefore, to obtain the correct physical parameters of these materials are important as conditions of the pilot measurement and processing tech-niques of the obtained data.
One of the methods of diagnostics, giving obtain information on the elemental and chemical composition parameters of the crystal and electronic structure and properties of semiconductor materials, is cathodoluminescence spectroscopy.
For a more precise study of the above properties is necessary to process the measured spectra. Since the measured values contain not only a useful component of the signal, but the random errors of measurement (noise) and systematic component, you need to filter the signal. Search and identification of peaks and determination of localization signals are also an important part of the preliminary analysis of the spectra.
One of the ways to reasonably quickly and with sufficient quality to improve the measured data, cleanse their errors is to use wavelets.
Wavelets - a mathematical function having the property of self-similarity and local in time and frequency ranges. The algorithm is based on the decomposition of the measured signal on the basis of wavelets provides an opportunity to pre-processing and analysis of sufficient quality and fast. This may be determined by the properties of the signal detected by conventional methods is difficult.
Pages: 15-19
References
- Abdullaev O.R., Gabelchenko A.I., Ivannikov P.V., JAkunin A.S. Issledovanija kubicheskogo nitrida bora metodami CKL i CKLVSR v rastrovom ehlektronnom mikroskope // Naukoemkie tekhnologii. 2013. № 11. S. 84−88.
- Strelchenko S.S. Perspektivy razvitija otechestvennojj ehlektroniki // Naukoemkie tekhnologii. 2014. № 2. S. 4−9.
- Kurdjukov D.A., SHishkin I.I, Grudinkin S.A., Sitnikova A.A., Zamorjanskaja M.V., Golubev V.G. Issledovanie struktury plenochnykh trekhmerno-uporjadochennykh makroporistykh nanokompozitov GaN-ZnS:Mn // Fizika i tekhnika poluprovodnikov. 2015. T. 49. № 5. S. 672−676.
- Petrov V.I. Katodoljuminescentnaja mikroskopija // Uspekhi fizicheskikh nauk. 1996. T. 166. № 8. S. 859−871.
- Pagel M.et al. (ed.). Cathodoluminescence in geosciences. SpringerScience & BusinessMedia. 2013. 514 s.
- Brillson L.J. Applications of depth-resolved cathodoluminescence spectroscopy // Journal of Physics D: Applied Physics. 2012. V. 45. № 18. S. 183001.
- Hooge F.N. 1/f noise sources // IEEE Transactions on Electron Devices. 1994. V. 41. № 11. S. 1926−1935.
- Korzhavyjj A.P., Nikiforov D.K. Matematicheskoe modelirovanie 1/f shuma v tverdom tele so strukturnymi defektami // Materialy Vseros. konf. «Matematika i mekhanika v sovremennom mire». Kaluga. 2001. S. 190−201.
- Nikiforov D.K., Korzhavyjj A.P. Fizicheskie osnovy ehlektrofluktuacionnojj diagnostiki defektnosti metallicheskikh plenok // Materialy Mezhdunar. nauchno-praktich. konf. «Fundamentalnye problemy radioehlektronnogo priborostroenija». M.: 2003. S. 321−322.
- Gençay R., Gradojevic N. Errors-in-variables estimation with wavelets // Journal of Statistical Computation and Simulation. 2011. V. 81. № 11. S. 1545−1564.
- Donoho D.L., Johnstone J.M. Ideal spatial adaptation by wavelet shrinkage // Biometrika. 1994. V. 81. № 3. P. 425−455.