350 rub
Journal Electromagnetic Waves and Electronic Systems №4 for 2014 г.
Article in number:
Choice of circuitry, design-technology realizations by development of an invasive biosensor based on a transistor
Authors:
V. N. Vyuginov - Ph.D. (Eng.), Director, CJSC «Svetlana-Semiconductors», St.-Peterburg. E-mail: mail@svetlana-ep.ru
A. G. Gudkov - Dr.Sc. (Eng.), Professor, MSTU named after N. E. Bauman; General Director, «Hyperion» Ltd
A. A. Zybin - Head of Laboratory, CJSC «Svetlana-Electronpribor», St.-Peterburg
S. A. Meshkov - Ph.D. (Eng.), Senior Research Scientist, «Hyperion» Ltd
D. I. Tsyganov - Dr.Sc. (Eng.), Russian Medical Academy of Postgraduate Education Studies
Abstract:
The biosensor unites in itself a bio-element (a receptor providing recognition of specific analyte) and the converter transforming a biological event to a measured signal. The main demands to transistors, used for creation of invasive biosensors are defined: stability at physiological concentration of salts, biocompatibility, sensitivity. The classic heterostructure with one AlGaN/GaN heterojunction is perspective for an invasive biosensor. The heterostructure is grown up by a method of a gas-phase epitaxy using decomposition of organometallic compound with a low pressure on a sapphire substrate (the diameter is 50,8 mm, thickness - 450-500 micrometer). AlGaN/GaN HEMT without a gate is chosen as constructive realization of a biosensor. This design is technological. Since the precision operations connected with formation of barrier metallization are excluded from technological process of its production. Also the giving scheme of supply voltage on the transistor becomes simpler. Disadvantage of biosensors based on single GaN-transistors is sensitivity of their parameters to temperature change that can cause false detection. The comparison principle of information signal of the transistor with the biomolecules immobilized on its gate area with a basic signal of the same transistor (which gate area is isolated from analyte effect) is used for a problem decision.
Pages: 66-70
References

  1. Casal, P., Wen, X., Gupta,S., Nicholson, T. III, Wang, Y., Theiss, A., Bhushan, B., Brillson, L., Lee, S. C., ImmunoFET feasibility in physiological salt environments (2012) Phil. Trans. R. Soc. A 370. R. 2474-2488.
  2. Webb, J. B., Tang, H., Bardwell, J. A., Liu, Y., Lapointe, J., MacElwee, T., Growth of GaN/AlGaN HFETs on SiC Substrates with Optimized Electrical Characteristics Using the Ammonia-MBE Technique // Phys.stat.sol.(a). 2002. V. 194. №2. P. 439-442.
  3. Gateless-FET pH Sensor Fabricated on Undoped AlGaN/GaN HEMT Structure. Sains Malaysia 40(3)(2011). R. 267-273.
  4. Mastura Shafinaz Zainal Abidin, Abdul Manaf Hashim, Maneea Eizadi Sharifabad, Shaharin Fadzli Abd Rahman and Taizoh Sadoh, Open-Gated pH Sensor Fabricated on an Undoped-AlGaN/GaN HEMT Structure. Sensors 2011. № 11. R. 3067-3077.
  5. Chu, B. H., Kang, B. S., Hung, S. C., Chen, K. H., Ren, F., Sciullo, A., Gila, B. P. and Pearton, S. J., Aluminum Gallium Nitride (GaN)/GaN High Electron Mobility Transistor-Based Sensors for Glucose Detection in Exhaled Breath Condensate. Journal of diabetes Science and Technology. 2010. № 4(1). R. 171-179.
  6. Gudkov A.G., Popov V.V., V'yuginov V. N., Volkov V. V., Zybin A.A. Prognozirovanie kachestva i nadezhnosti IS SVCh na etapakh razrabotki i proizvodstva. Ch. 46. Tranzistory GaN s dlinoy zatvora 0,5 mkm i periferiey 500 mkm i 1500 mkm // Mashinostroitel'. 2014. № 1. S. 42-44.
  7. Kang, B. S., Wang, H. T., Ren, F., Gila, B. P., Abernathy, C. R., S. Pearton, J., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L., and Linthicum, K. J., pH sensorusing AlGaN/GaN high electron mobility transistors with Sc2O3 in the gate region. Applied Physics Letters. 2007. № 91. R. 012-110.