350 rub
Journal Electromagnetic Waves and Electronic Systems №7 for 2012 г.
Article in number:
Comparison of strain-gradient theory of elasticity and the classical model of media with nonconstant properties
Keywords:
strain-gradient theory of elasticity
modeling
nonconstant modulus of elasticity
the scale parameter
Authors:
S.A. Lurie, Y.O. Solyaev, S.S. Tarasov, C. Pham
Abstract:
The paper presents the interpretation of the gradient theory of elasticity, as a theory of media with nonconstant properties. By the example solving the problem of extension of two-phase one-dimensional fragment it is shown the correspondence of solutions obtained in the framework of strain-gradient models and the theory of medium with variable modulus of elasticity. The model with variable properties is constructed by adding to the original two-phase fragment the third phase (interphase layer), in which the modulus of elasticity varies along the length by a linear law or sinusoidally. Analytic functions of displacement and strain defined in this fragment. For given characteristics of the structure non-classical scaling parametre of gradient model is found for the best fit the conditions of the displacement equals in the two models, or by equating the strain energy. It is shown that strain-gradient model can approximately describes the various options of media with variable modulus of elasticity, with different values of the gradient parameter of the model determines various options for the variability of properties.
Pages: 25-30
References
- Aifantis E.C. On the role of gradient in the localization of deformation and fracture // Int. J. Engng. Sci. 1992. V. 30. P. 1279-1299.
- Ru C.Q. Ru and Aifantis E.C. A simple approach to solve boundary value problems in gradient elasticity // Acta Mech. 1993. V. 101. P. 59-68.
- Aifantis E.C. On the microstructural origin of certain inelastic models // Trans ASME. J. Engng. Mat. Tech. 1984. V. 106. P. 326-330.
- Aifantis E.C. The physics of plastic deformation // Int. J. Plastisity. 1987. V. 3. P. 211-247.
- Aifantis E.C. Gradient effects at the macro, micro and nano scales // J. Mech. Behav. Mater. 1994. V. 5. P. 335-353.
- Aifantis E.C. Strain gradient interpretation on size effects // Int. J. Fract. 1999. V. 95. P. 299-314.
- Aifantis E.C. Gradient deformation models of nano, micro, and macro scales // J. Eng. Mat. Techno. 1999. V. 121. P. 189-202.
- Aifantis E.C. Update on a class of gradient theories // Mech. Mat. 2003. V. 35. P. 256-280.
- Fleck N.A., Hutchinson J.W. Strain gradient plasticity // Adv. in Appl. Mech. 1997. V. 33. P. 295-361.
- Fleck N.A., Hutchinson J.W. A reformulation of strain gradient plasticity // J. Mech. Phys. 2001. V. 9. P. 2245-2271.
- Gao H., Huang Y., Nix W.D., Hutchinson J.W. Mechanism-based strain gradient plasticity ? I. Theory // J. Mech. Phys. Solids. 1999. V. 47. P. 1239-1263.
- Gutkin M.Yu. Nanoscopics of dislocations and disclinations in gradient elasticity // Rev. Adv. Mater. Sci. 2000. V. 1. I. 1. P. 27-60.
- Aifantis K.E., Willis J.R. The role of interfaces in enhancing the yield strength of composites and polycrystals // J. Mech. Phys. Solids. 2005. V. 53. P. 1047-1070.
- Aifantis K.E., Askes H. Gradient elasticity with interfaces as surfaces of discontinuity for the strain gradient // J. Mech. Behav. Mater. 2007. V. 18. P. 283-306.
- Lurie S., Kalamkarov A. General theory of continuous media with conserved dislocations // Int. J. Solids and Structures. 2007. V. 44. P. 7468-7485.
- Lurie S.A., Belov P.A. Cohesion field: Barenblatt-s hypothesis as formal corollary of theory of continuous media with conserved dislocations // Int. J. Fract. 2008. V. 50. I. 1-2. P. 181-194.
- Белов П.А., Лурье С.А. Континуальная модель микрогетерогенных сред // ПММ. 2009. Т. 73. №5. С. 833-848.
- Волков-Богородский Д.Б., Лурье С.А. Интегральные формулы Эшелби в градиентной теории упругости // МТТ. Изв. РАН. 2010. №4. С. 182-192.
- Лурье С.А., Дудченко А.А. Введение в механику нанокомпозитов. М.: МАИ-принт. 2010.
- Lurie S.A., Belov P.A., Volkov-Bogorodsky D.B., Tuchkova N.P. Interphase layer theory and application in the mechanics of composite materials // J. Mat. Sci. 2006. V. 41. I. 20. P. 6693-6707.
- Mindlin R.D. Elasticity, piezoelasticity and crystal lattice dynamics // J. Elasticity. 1972. V. 2. I. 4. P. 217-280.
- Maugin G.A. Material forces: concepts and applications // Appl. Mech. Rev. 1995. V. 48. P. 213-245.
- Evans A.G., Hutchinson J.W. A critical assessment of theories of strain gradient plasticity // Acta Mater. 2009. V. 57. I. 5. P. 1675-1688.
- Gusev A.A., Lurie S.A. Strain-Gradient Elasticity for Bridging Continuum and Atomistic Estimates of Stiffness of Binary Lennard-Jones Crystals // Advanced Engineering Materials. 2010. V. 12. I. 6. P. 529-533.
- Lurie S., Volkov-Bogorodsky D., Leontiev A., Aifantis E. Eshelby-s inclusion problem in the gradient theory of elasticity: Applications to composite materials // International Journal of Engineering Science. 2011. V. 49. I. 12. P. 1517-1525.