350 rub
Journal Electromagnetic Waves and Electronic Systems №12 for 2011 г.
Article in number:
Asymptotic Estimations for Optical Transfer Functions with Defocusing
Authors:
A.N. Simonov, A.B. Samokhin, O.V. Mikheev
Abstract:
An approximate analytical expression is derived for the two-dimensional incoherent optical transfer function (OTF) of an imaging system invariant to second-order aberrations. Clearly the defocus aberration is of major interest because of its high potential for technical and consumer imaging applications. We propose a two-dimensional generalization of the methods developed for approximating the OTF of a one-dimensional fixed-focus optical system with an encoding phase mask. The analysis is based on the two-dimensional stationary phase method and does not require separability of the pupil function. An approximate expression for the OTF of the imaging system invariant to second-order aberrations resulting from a third-order phase mask is obtained explicitly. The OTF is found to be a well-defined and smooth function at all non-zero spatial frequencies when the phase mask function includes third-order mixed terms in the pupil coordinates. To the best of our knowledge, this is the first study of the two-dimensional OTF asymptotics which does not require additional simplifications and assumptions about the pupil function and the pupil shape.
Pages: 57-63
References
  1. Goodman J.W.Introduction to Fourier Optics / Roberts&Company Publishers. 2005.
  2. Hopkins H.H. The frequency response of a defocused optical system. Proc. Roy. Soc. of London. 1955. V. A231. P. 91 - 103.
  3. Stokseth P.A. Properties of a defocused optical system // J. Opt. Soc. Am. 1969. V. 59. P. 1314 - 1321.
  4. Born M., Wolf E.Principles of Optics. Cambridge Univ. Press. 2003.
  5. Mahajan V.N.Optical Imaging and Aberrations. SPIE Press. 2001. V. 2.
  6. Simonov A.N., Rombach M.C. Asymptotic behaviour of the spatial frequency response of an optical system with defocus and spherical aberration // J. Opt. Soc. Am. 2010. V. A27. P.2563 - 2573.
  7. Федорюк М.В.Метод Перевала. М.: Наука. 1977.
  8. Гантмахер Ф.Р.Теория Матриц. М.: Наука. 1988.
  9. Федорюк М.В.Асимптотика: Интегралы и Ряды. М.: Наука. Гл. ред. физ.-мат. лит. 1987.
  10. Dowski E.R., Cathey W.T. Extended depth of field through wave-front coding // Appl. Opt. 1995. V. 34. P. 1859 - 1866.
  11. Johnson G.E., Dowski E.R., Cathey W.T. Passive ranging through wave-front coding: information and application // Appl. Opt. 2000. V. 39. P. 1700 - 1710.
  12. Cathey W.T., Dowski E.R. New paradigm for imaging systems // Appl. Opt. 2002. V. 41. P. 6080 - 6092.
  13. Prasad S., Torgersen T.C., Pauca V.P., Plemmons R.J., J. van der Gracht. High-resolution imaging using integrated optical systems // Intern. J. Imag. Sys. Techol. 2004. V. 14. P. 67 - 74.
  14. Bagheri S., Silveria P.E.X., Farias D.P. Analytical optimal solution of the extension of the depth of filed using cubic-phase wavefront coding. Part I. Reduced-complexity approximate representation of the modulation transfer function // J. Opt. Soc. Am. 2008. V. A 25. P. 1051 - 1063.
  15. Kaminski D. Exponentially improved stationary phase approximations for double integrals. Meths. Appl. Analysis. 1994. V. 1. P. 44 - 56.