350 rub
Journal Electromagnetic Waves and Electronic Systems №12 for 2011 г.
Article in number:
Asymptotic Estimations for Optical Transfer Functions with Defocusing
Authors:
A.N. Simonov, A.B. Samokhin, O.V. Mikheev
Abstract:
An approximate analytical expression is derived for the two-dimensional incoherent optical transfer function (OTF) of an imaging system invariant to second-order aberrations. Clearly the defocus aberration is of major interest because of its high potential for technical and consumer imaging applications. We propose a two-dimensional generalization of the methods developed for approximating the OTF of a one-dimensional fixed-focus optical system with an encoding phase mask. The analysis is based on the two-dimensional stationary phase method and does not require separability of the pupil function. An approximate expression for the OTF of the imaging system invariant to second-order aberrations resulting from a third-order phase mask is obtained explicitly. The OTF is found to be a well-defined and smooth function at all non-zero spatial frequencies when the phase mask function includes third-order mixed terms in the pupil coordinates. To the best of our knowledge, this is the first study of the two-dimensional OTF asymptotics which does not require additional simplifications and assumptions about the pupil function and the pupil shape.
Pages: 57-63
References
- Goodman J.W.Introduction to Fourier Optics / Roberts&Company Publishers. 2005.
- Hopkins H.H. The frequency response of a defocused optical system. Proc. Roy. Soc. of London. 1955. V. A231. P. 91 - 103.
- Stokseth P.A. Properties of a defocused optical system // J. Opt. Soc. Am. 1969. V. 59. P. 1314 - 1321.
- Born M., Wolf E.Principles of Optics. Cambridge Univ. Press. 2003.
- Mahajan V.N.Optical Imaging and Aberrations. SPIE Press. 2001. V. 2.
- Simonov A.N., Rombach M.C. Asymptotic behaviour of the spatial frequency response of an optical system with defocus and spherical aberration // J. Opt. Soc. Am. 2010. V. A27. P.2563 - 2573.
- Федорюк М.В.Метод Перевала. М.: Наука. 1977.
- Гантмахер Ф.Р.Теория Матриц. М.: Наука. 1988.
- Федорюк М.В.Асимптотика: Интегралы и Ряды. М.: Наука. Гл. ред. физ.-мат. лит. 1987.
- Dowski E.R., Cathey W.T. Extended depth of field through wave-front coding // Appl. Opt. 1995. V. 34. P. 1859 - 1866.
- Johnson G.E., Dowski E.R., Cathey W.T. Passive ranging through wave-front coding: information and application // Appl. Opt. 2000. V. 39. P. 1700 - 1710.
- Cathey W.T., Dowski E.R. New paradigm for imaging systems // Appl. Opt. 2002. V. 41. P. 6080 - 6092.
- Prasad S., Torgersen T.C., Pauca V.P., Plemmons R.J., J. van der Gracht. High-resolution imaging using integrated optical systems // Intern. J. Imag. Sys. Techol. 2004. V. 14. P. 67 - 74.
- Bagheri S., Silveria P.E.X., Farias D.P. Analytical optimal solution of the extension of the depth of filed using cubic-phase wavefront coding. Part I. Reduced-complexity approximate representation of the modulation transfer function // J. Opt. Soc. Am. 2008. V. A 25. P. 1051 - 1063.
- Kaminski D. Exponentially improved stationary phase approximations for double integrals. Meths. Appl. Analysis. 1994. V. 1. P. 44 - 56.