350 rub
Journal Electromagnetic Waves and Electronic Systems №12 for 2011 г.
Article in number:
Substantiation of Method by Galerkin for Two-Dimension Diffraction Problems
Keywords:
method by Galerkin
two-dimension problem
diffraction
convergence
functional fields
existence theorem
unicity theorem
Authors:
A.V. Sochilin, I.S. Eminov, S.I. Eminov
Abstract:
Method by Galerkin is one of general methods for numerical solution to integral equations. There is a great experience of solution to integral equations by Galerkin-s method in the theory of diffraction and in the theory of antennas. But the experience has empirical character. This work is devoted to theoretical proof of method by Galerkin.
And like a base for substantiation of method by Galerkin is proved of equivalence initial equation for second type by Fredholm.
Energy fields of symmetry positive operators and positive defined ones were choose as functional fields of solutions.
Earlier known method by S.G. Mikhlin would hold for positive defined operators only. In this work the methods are summarized for more general case for positive operators. The fields, which included right parts of integral equations, are explicated.
Effective criterion for compact integral operators is given in this work too.
The explicated theory explain the great experimental experience of solution to integral equations, which was accumulated in the theory of diffraction and the theory of antennas.
Pages: 4-10
References
- Захаров Е.В., Пименов Ю.В. Численный анализ дифракции радиоволн. М.: Радио и связь. 1982.
- Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Изд-во физ. мат. лит-ры, 1962.
- Эминов С.И.Теория интегрального уравнения тонкого вибратора // Радиотехника и электроника.
1993. Т. 38. Вып. 12.
С. 2160-2168. - Эминов С.И.Ортонормированный базис в пространствах Соболева-Слободецкого на отрезке // Дифференциальные уравнения. 2005. Т.41. № 4. С.558 - 560.
- Михлин С.Г.Вариационные методы в математической физике. М.: Наука. 1970.
- Михлин С.Г.Линейные уравнения в частных производных. М.: Высшая школа. 1977.
- Эскин Г.И.Краевые задачи для эллиптических псевдодифференциальных уравнений. М.: Наука. 1973.
- Эминов С.И.Аналитическое обращение гиперсингулярного оператора и его приложения в теории дифракции // Докл. РАН. 2005. Т. 403. № 3. С. 339-344.