350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2011 г.
Article in number:
The Regular and Chaotic Dynamics of Weak-Nonlinear Interaction of Waves
Authors:
V.A. Buts, I.K. Kovalchuk, D.V. Tarasov, A.P. Tolstoluzhsky
Abstract:
In the present paper some new aspects of dynamics of weak-nonlinear interactions of waves are discussed. First of all it is shown that essential growth of the degree of the coherence of the decaying wave can be observed at three-wave interactions. The most important result is that that the part of energy of the decaying wave goes to the field of the low-frequency wave. This part of energy can be very insignificant while together with this insignificant energy all entropy practically remove from the decaying wave. The degree of the coherence of the decaying wave essentially grows in this case. The dynamics of the regimes of the decaying waves is investigated. The existence of the regime at which the degree of the coherence of the decaying packet of waves essentially grows and also regimes with chaotic dynamics is shown. The dynamics of weak-nonlinear interactions of waves in the schemes that represents practical interest is investigated. The models which appear at the description of processes in plasma when intensive laser radiation impacts on plasma and in particular the case of two laser streams (beat wave scheme) are investigated. The most interesting result of this section is that at the unlimited number of degrees of freedom (the unlimited number of interacting waves) the viewed model has the rigorous analytical solution and no complex chaotic regimes in it appear. In actual conditions the number of waves is restricted. It is shown that depending on dispersion features of medium and depending on starting conditions regimes with both regular, and with chaotic dynamics can be realized in such models. Regimes with chaotic dynamics at weak-nonlinear interaction of waves can find significant practical application. In particular they can be used for control of the spectrum characteristics of practically any generator. However, as show numerical estimations, large intensity of fields of interacting waves are in most cases necessary for practical implementation of these conditions. The magnitude of interacting waves at which the regime of the regular dynamics transfers to the chaotic regime, appears the greater the more distance between natural waves of investigated electrodynamic structure. Therefore such electrodynamic structures in which the distance between natural waves was small enough are necessary for successful implementation of chaotic regimes at the moderate values of fields. With this purpose the well known plasma model - a waveguide filled with rare plasma investigated. It is shown, that in such structure there can be fast natural waves with close values of frequencies and wave vectors.
Pages: 51-62
References
  1. Буц В.А, Куприянов А.Н.,.Мануйленко О.В,.Толстолужский А.П.Неустойчивость и динамический хаос при слаболинейном взаимодействии волн // Известия вузов. «ПНД». Т.1. № 1. № 2. 1993. С.57-62.
  2. Буц В.А.,.Мануйленко О.В,.Степанов К.Н, Толстолужский А.П. Хаотическая динамика заряженных частиц при взаимодействии типа волна-частица и хаотическая динамика волн при слабонелинейном взаимодействии типа волна-волна // Физика плазмы. 1994. Т.20. № 9. С. 794-801.
  3. Buts V.A., Manuylenko O.V., Tolstoluzhskii A.P. Instability and Dynamicall Chaos in a Weak Nonlinear Interaction of Waves. EPAC-94 European Particle Accelerator Conference, London, 27 June to 1 July 1994, Queen Elizabeth 11 Conference Centre. Р.145-146.
  4. Buts V.A., Manuilenko O.V., Tolstoluzhskii A.P., Turkin Yu.A. Stochastic instability of the modified decay.  1998 International Congress on Plasma Physics combined with the 25-rd EPS conference on Controlled Fusion and Plasma Physics. Prague, Czech Rep., June 29-July 3. 1998. Conf. proc., Р.252-255. (ECA vol.22C. Р.252-255).
  5. Buts V.A., Manuilenko O.V., Tolstoluzhskii A.P. Development of Dynamical Chaos under Nonlinear Interaction of Waves in Bounded Magnetized Plasma System. 5th European Particle Accelerator Conference (EPAC»96). 10-14 June 1996 (Barcelona). Р.111-112.
  6. Buts V.A., Kovalchuk I.K., Kornilov E.A., Tarasov D.V. Stabilization beam instability as a result of development of local instability at interaction of type a wave-wave // Physics of plasma. 2006. V. 32. № 6. P. 1-10.
  7. Кадомцев Б.Б. Коллективные явления в плазме М: Наука, Гл. Ред. Физ.-мат. лит. 1988.
  8. Вильхельмссон Х., Вейланд Я. Когерентное нелинейное взаимодействие волн в плазме. М.: Энергоиздат. 1981.  (H Wilhelmsson, J. Weiland. Coherent non-linear interaction of waves in plasmas).
  9. Кляцкин В.И. Статистическое описание динамических систем с флуктуирующими параметрами // Современные проблемы физики. М.: Наука. 1975.
  10. Буц В.А. Некоторые особенности второго начала термодинамики // Успехи современной радиоэлектроники. 2008. № 7. C. 42-53.
  11. BakajA.S.Interaction of high frequency and low frequency waves in a plasma // Nuclear Fusion. 1970. V. 10. P. 53-67.
  12. Водяницкий А.А., Репалов Н.С. Нелинейные взаимодействия продольных волн в неизотермической плазме. // ЖТФ. 1970.  Т.40. №1. С.32.
  13. Кондратенко А.Н. Плазменные волноводы. М.: Атомиздат. 1976.
  14. Энциклопедия низкотемпературной плазмы. Т. 4. Разд. X. М.: Наука. 2000. C. 132-151.