350 rub
Journal Electromagnetic Waves and Electronic Systems №10 for 2009 г.
Article in number:
Interaction of Electromagnetic Waves with Periodically Modulated Anisotropic Magnetodielectric Filling of a Waveguide
Keywords:
electromagnetic waves
waveguide with modulated filling
signal wave
modulation wave
modulation index
propagation of waves
frequency region of interaction
Authors:
E. A. Gevorkyan
Abstract:
In this article the propagation of electromagnetic waves in a waveguide with modulated anisotropic magnetodielectric filling is investigated. At the same time it is considered, that the diagonal elements of the permittivity and permeability tensors vary in space and time under the periodic low. It is supposed, that in a similar waveguide propagates the signal wave with the certain frequency in a positive direction of OZ axis of some Cartesian coordinate frame (OZ axis coincides with an axis of a waveguide). Transverse-electric (TE) and transverse-magnetic (TM) fields in a waveguide are described by means of longitudinal components of magnetic and electric vectors accordingly. The wave equations for these components, received from the Maxwell-s equations, are solved with help of method, developed in our early articles. As a result of carried out research analytical expressions for TE- and TM-fields to a first approximation on small modulation indexes of the filling of a waveguide in the region of «weak» interaction between the signal wave and the modulation wave are received. These expressions show, that TE- and TM-fields in a waveguide with modulated anisotropic magnetodielectric filling represent a superposition of space-time harmonics of different amplitudes. Thus in the region of weak interaction the amplitude of basic harmonic does not depend on modulation indexes, whereas the amplitudes of plus and minus harmonics are proportional to small modulation indexes in the first degree. It is shown, that in the important frequency region of «strong» (resonant) interaction between the signal wave and the modulation wave (the width of this region is proportional to the modulation indexes in the first degree) occurs significant interchange of energy between them. It corresponds to realization of the first-order WolfBragg condition, when the waves reflected from high-density points of an interference pattern are amplified. Analytical expressions of frequency and frequency width of strong interaction are received.
Pages: 65-72
References
- Gevorkyan E.A. On the theory of electromagnetic waves in a waveguide filled with an anisotropic space-time periodically modulated filling // Proceedings of the 10 th International Conference on Mathematical Methods in Electromagnetic Theory. Dniepropetrovsk. Ukraine. September 14-17 2004. P. 370-371.
- Геворкян Э.А. Распространение электромагнитных волн в волноводе с анизотропным модулированным заполнением // ЖТФ. 2006. Т. 76. № 5. С. 134-137.
- Геворкян Э.А. К теории распространения электромагнитных волн в волноводе с магнитоактивным анизотропным модулированным заполнением // Радиотехника и электроника. 2008. Т. 53. № 5. С. 565-569.
- Simon J.C. Action of progressive disturbance on a guided electromagnetic wave // IRE. Transactions on Microwave Theory and Techniques. 1960. V. MTT-8. No. 1. Р. 18-29.
- Peng S.T., Cassedy E.S. Scattering of light waves at boundaries to parametrically modulated media. Proceedings of the Symposium on Modern Optics. Brooklyn. N.Y.: Politecnic Press. 1967. V. MRI-17. P. 299-342.
- Ярив А., Юх П. Оптические волны в кристаллах: пер. с англ. М.: Мир. 1987.
- Sailing He, Yidong Hu, Staffan S. Electromagnetic reflection and transmission for a stratified bianisotropic slab // IEEE Transactions on Antennas and Propagation. 1994. V. AP. 42. No. 6. Р. 856-858.
- Elachi Ch., Yeh C. Periodic structures in integrated optics // Journal of Applied Physics. 1973. V. 44. P. 3146-3152.
- БарсуковК.А., Геворкян Э.А. К теории распространения электромагнитных волн в волноводе с нестационарным неоднородным заполнением // Радиотехника и электроника. 1983. Т. 28. № 2. С. 237-241.
- Gevorkyan E.A. On the method of solution of the wave equation with periodic coefficients // Proceedings of International Conference on Mathematical Methods in Electromagnetic Theory. Kiev, Ukraine, September 10-13 2002. V. 2. P. 373-375.
- Gevorkyan E.A. On the theory of electrodynamics of space - time periodic medium in the waveguide // Proceedings of the Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves. Kharkov. Ukraine. June 21-26. 2004. V. 1. P. 296-298.
- Геворкян Э.А. К электродинамике периодически нестационарных и неоднородных сред в волноводах произвольного поперечного сечения //Успехи современной радиоэлектроники. 2006. № 1. С. 3-29.
- Барсуков К.А. К теории волновода с нестационарным заполнением // Радиотехника и электроника. 1964. Т. 9. № 7.
С. 1173-1178. - Борн М., Вольф Э. Основы оптики: пер. с англ. М.: Наука. 1973
- Элаши Ш. Волны в активных и пассивных периодических структурах (Обзор) // ТИИЭР. 1976. Т. 64. № 12. С. 22-58.