350 rub
Journal Biomedical Radioelectronics №7 for 2025 г.
Article in number:
Functional connectivity of neural networks of the brain in patients with schizophrenia before and after TMS therapy
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202507-01
UDC: 612.821
Authors:

D.A. Kovalishina1, V.A. Orlov2, Yu.A. Pirogov3

1,2 National Research Center “Kurchatov Institute” (Moscow, Russia)
3 Lomonosov Moscow State University (Moscow, Russia)
1 kovalishina_da@nrcki.ru

Abstract:

The paper investigates the functional connectivity of the brain in patients with schizophrenia and uses functional magnetic resonance imaging to analyze changes in this connectivity in response to transcranial magnetic stimulation. The work focuses on pipeline validation and the selection and evaluation of metrics for assessing functional connectivity in patients with schizophrenia both before and after transcranial magnetic stimulation therapy in order to identify differences between patient groups. This selection is necessary to create a model of pathophysiological changes in the brain of patients with schizophrenia. The creation of such a model will allow schizophrenia to be diagnosed based on objective and measurable biomarkers supported by a well-founded evidence base, instead of relying on indirect signs. A total of 7 patients with schizophrenia (mean age 40.8±2.1) were recorded before and after Transcranial magnetic stimulation (TMS) therapy. Data were collected using a GE Signa Premier 3T tomograph. Specific metrics such as correlation coefficients and transfer entropy are used to analyze connectivity in different brain regions, with an emphasis on assessing their significance in the context of therapy. The researches show that transcranial magnetic stimulation leads to statistically significant changes in functional connectivity of the brain in patients with schizophrenia. Conclusion: The correlation family metrics in this work showed the greatest difference between the groups of patients before and after TMS therapy. The nature of the calculation of these metrics lies in the calculation of the Pearson correlation, which, in turn, is one of the most common statistical parameters. The choice of these metrics as one of the main ones in the calculation of the model of pathophysiological changes in the brain of patients with schizophrenia will allow the use of a variety of tools from different scientific disciplines.

Pages: 5-16
For citation

Kovalishina D.A., Orlov V.A., Pirogov Yu.A. Functional connectivity of neural networks of the brain in patients with schizophrenia before and after TMS therapy. Biomedicine Radioengineering. 2025. V. 28. № 7. P. 5–16. DOI: https:// doi.org/10.18127/j15604136-202507-01 (In Russian)

References
  1. Aleman A., Enriquez-Geppert S., Knegtering H., Dlabac-de Lange J.J. Moderate effects of noninvasive brain stimulation of the frontal cortex for improving negative symptoms in schizophrenia: Meta-analysis of controlled trials. Neurosci Biobehav Rev. 2018 Jun. 89. P. 111–118. https://doi.org/10.1016/j.neubiorev.2018.02.009.
  2. Friston K.J. Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp. Wiley. 1994. V. 2. № 1–2. P. 56–78. https://doi.org/10.1002/hbm.460020107.
  3. Eickhoff S. B., Jbabdi S., Caspers S., Laird A. R., Fox P. T., Zilles K., Behrens T. E. Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J. Neurosci. 2010. V. 30. № 18. P. 6409–6421. https://doi.org/10.1523/JNEUROSCI.5664-09.2010.
  4. Goebel R., Roebroeck A., Kim D.S., Formisano E. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging. 2003. V. 21. № 10. P. 1251–1261. https://doi.org/10.1016/j.mri.2003.08.026.
  5. Friston K.J., Buechel C., Fink G.R., Morris J., Rolls E., Dolan R.J. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage. 1997. V. 6. № 3. P. 218–229. https://doi.org/10.1006/nimg.1997.0291.
  6. Laursen T.M., Nordentoft M., Mortensen P.B. Excess early mortality in schizophrenia. Annu Rev. Clin Psychol. 2014. V. 10. P. 425–448. https://doi.org/10.1146/annurev-clinpsy-032813-153657.
  7. Kinsey S., Kazimierczak K., Camazón P.A., Chen J., Adali T., Kochunov P., Adhikari B.M., Ford J., van Erp T.G. M., Dhamala M., Calhoun V.D., Iraji A. Networks extracted from nonlinear fMRI connectivity exhibit unique spatial variation and enhanced sensitivity to differences between individuals with schizophrenia and controls. Nature Mental Health. 2024. V. 2. № 12. P. 1464–1475. https://doi.org/10.1038/s44220-024-00341-y.
  8. Metzner C., Dimulescu C., Kamp F., Fromm S., Uhlhaas P.J., Obermayer K. Exploring global and local processes underlying alterations in resting-state functional connectivity and dynamics in schizophrenia. Front Psychiatry. 2024. V. 15. P. 1352641. https://doi.org/10.3389/fpsyt.2024.1352641 EDN: PLHWPV.
  9. Xue K., Che J., Wei Y., Chen Y., Han S., Wang C., Zhang Y., Song X., Cheng J. Impaired large-scale cortico-hippocampal network connectivity, including the anterior temporal and posterior medial systems, and its associations with cognition in patients with first-episode schizophrenia. Front Neurosci. 2023. V. 17. P. 1167942. https://doi.org/10.3389/fnins.2023.1167942 EDN: WNGLPU.
  10. Ruiz-Torras S., Gudayol-Ferré E., Fernández-Vazquez O., Cañete-Massé C., Peró-Cebollero M., Guàrdia-Olmos J. Hypoconnectivity networks in schizophrenia patients: A voxel-wise meta-analysis of Rs-fMRI. Int J Clin Health Psychol. 2023. V. 23. № 4. P. 100395. https://doi.org/10.1016/j.ijchp.2023.100395 EDN: GUYFBW.
  11. Mahmood U., Fu Z., Ghosh S., Calhoun V., Plis S. Through the looking glass: Deep interpretable dynamic directed connectivity in resting fMRI. Neuroimage. 2022. V. 264. P. 119737. https://doi.org/10.1016/j.neuroimage.2022.119737 EDN: XNFGCA.
  12. Gifford G., Crossley N., Kempton M.J., Morgan S., Dazzan P., Young J., McGuire P. Resting state fMRI based multilayer network configuration in patients with schizophrenia. Neuroimage Clin. 2020. V. 25. P. 102169. https://doi.org/10.1016/j.nicl.2020.102169 EDN: THHJPN.
  13. Fornito A., Bullmore E.T. What can spontaneous fluctuations of the blood oxygenation-level-dependent signal tell us about psychiatric disorders?. Curr Opin Psychiatry. 2010. V. 23. № 3. P. 239–249. https://doi.org/10.1097/YCO.0b013e328337d78d.
  14. Salvador R., Sarró S., Gomar J.J., Ortiz-Gil J., Vila F., Capdevila A., Bullmore E.T., McKenna P.J., Pomarol-Clotet E. Overall brain connectivity maps show cortico-subcortical abnormalities in schizophrenia. Hum Brain Mapp. 2010. V. 31. № 12. P. 2003-2014. https://doi.org/10.1002/hbm.20993.
  15. Fu Z., Iraji A., Turner J.A., Sui J., Miller R., Pearlson G.D., Calhoun V.D. Dynamic state with covarying brain activity-connectivity: On the pathophysiology of schizophrenia. Neuroimage. 2021. V. 224. P. 117385. https://doi.org/10.1016/j.neuroimage.2020.117385 EDN: YNZXUS.
  16. Yang H., Zhang H., Di X., Wang S., Meng C., Tian L., Biswal B. Reproducible coactivation patterns of functional brain networks reveal the aberrant dynamic state transition in schizophrenia. Neuroimage. 2021. V. 237. P. 118193. https://doi.org/10.1016/j.neuroimage.2021.118193 EDN: OHLJWZ.
  17. Matsumoto Y., Nishida S., Hayashi R., Son S., Murakami A., Yoshikawa N., Ito H., Oishi N., Masuda N., Murai T., Friston K., Nishimoto S., Takahashi H. Disorganization of Semantic Brain Networks in Schizophrenia Revealed by fMRI. Schizophr Bull. 2023. V. 49. № 2. P. 498-506. https://doi.org/10.1093/schbul/sbac157 EDN: IDQLYA.
  18. Wang H.E., Friston K.J., Bénar C.G., Woodman M.M., Chauvel P., Jirsa V., Bernard C. MULAN: Evaluation and ensemble statistical inference for functional connectivity. Neuroimage. 2018. V. 166. P. 167–184. https://doi.org/10.1016/j.neuroimage.2017.10.036.
  19. Rodgers J.L., Nicewander W.A. Thirteen ways to look at the correlation coefficient. Am. Stat. JSTOR. 1988. V. 42. № 1. P. 59. https://doi.org/10.2307/2685263.
  20. Schreiber T. Measuring information transfer. Phys. Rev. Lett. 2000. V. 85. № 2. P. 461–464. https://doi.org/10.1103/PhysRevLett. 85.461 EDN: LOIRFJ.
  21. Granger C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. JSTOR. 1969. V. 37. № 3. P. 424. https://doi.org/10.2307/1912791.
  22. Chicharro D. On the spectral formulation of Granger causality. Biol Cybern. 2011. V. 105. № 5–6. P. 331–347. https://doi.org/10.1007/ s00422-011-0469-z EDN: VZEDHF.
  23. Laird A., Carew J., Meyerand M.E. Analysis of the instantaneous phase signal of a fMRI time series via the Hilbert transform. Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256). IEEE. 2001. https://doi.org/10.1109/ACSSC.2001.987770.
  24. Minorsky N., Teichmann T. Nonlinear Oscillations. Physics Today. 1962. V. 15. № 9. P. 63–65. https://doi.org/10.1063/1.3058390.
  25. Pikovsky A., Rosenblum M., Kurths J. Phase synchronization in regular and chaotic systems. Int. J. Bifurcat. Chaos. World Scientific Pub Co Pte Lt. 2000. V. 10. № 10. P. 2291–2305. https://doi.org/10.1142/S0218127400001481 EDN: SSAFML.
  26. Saad Z.S., Ropella K.M., Cox R.W., DeYoe E.A. Analysis and use of FMRI response delays. Hum Brain Mapp. 2001. V. 13. № 2. P. 74–93. https://doi.org/10.1002/hbm.1026 EDN: LOASIX.
  27. Schäfer C., Rosenblum M.G., Abel H.H., Kurths J. Synchronization in the human cardiorespiratory system. Phys. Rev. E Stat Phys. Plasmas Fluids Relat Interdiscip Topics. 1999. V. 60. № 1. P. 857–870. https://doi.org/10.1103/PhysRevE.60.857 EDN: LQROFB.
  28. Tass P., Rosenblum M.G., Weule J., Kurths J., Pikovsky A., Volkmann J., Schnitzler A., Freund H.-J. Detection of n:m Phase locking from noisy data: Application to magnetoencephalography. Phys. Rev. Lett. American Physical Society (APS). 1998. V. 81. № 15. P. 3291–3294. https://doi.org/10.1103/PhysRevLett.81.3291 EDN: LQRNZR.
  29. Toronov V., Franceschini M.A., Filiaci M., Fantini S., Wolf M., Michalos A., Gratton E. Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping. Med. Phys. 2000. V. 27. № 4. P. 801–815. https://doi.org/10.1118/1.598943 EDN: YDSFAG.
  30. Stratonovich R.L. Topics In the Theory of Random Noise. CRC Press. 1967. 348 с.
  31. Shannon C.E., Weaver W. The Mathematical Theory of Communication. University of Illinois Press. 1998. 141 с.
  32. SPM. URL: http://fil.ion.ucl.ac.uk/spm.
  33. Whitfield-Gabrieli S., Nieto-Castanon A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity. 2012. V. 2. № 3. P. 125–141. https://doi.org/10.1089/brain.2012.0073.
  34. Jenkinson M., Beckmann C.F., Behrens T.E.J., Woolrich M.W., Smith S.M. FSL. NeuroImage. 2012. V. 62. № 2. P. 782–790. https:// doi.org/10.1016/j.neuroimage.2011.09.015.
  35. The MathWorks Inc. (2022). 9.13.0.2399474 (R2022b) Update 7. Natick. Massachusetts: The MathWorks Inc. https://www.mathworks. com.
  36. Mann H.B., Whitney D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics. 1947. V. 18. № 1. P. 50–60. https://doi.org/10.1214/aoms/1177730491.
  37. Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bulletin. 1945. V. 1. № 6. P. 80. https://doi.org/10.2307/3001968.
  38. Bonferroni C. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R istituto superiore di scienze economiche e commericiali di firenze. 1936. V. 8. P. 3–62.
  39. Enyagina I.M., Poyda A.A., Poyakov A.N., Kartashov S.I., Orlov V.A., Ushakov V.L. PICA-based algorithm for automatic detection of resting-state functional networks. Implementation on digital lab platform. Phys. Part. Nucl. Lett. Pleiades Publishing Ltd. 2020. V. 17. № 1. P. 92–96. https://doi.org/10.1134/S1547477120010070 EDN: THYGTK.
  40. Lee Rodgers, J., Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient, The American Statistician. 1988. V. 42(1). P. 59–66. https://doi.org/10.1080/00031305.1988.10475524.
  41. Ushakov V.L., Pojda A.A., Kozlov S.O., Orlov V.A., Sharaev M.G. Osobennosti postroeniya funkcional'nyh konnektomov po dannym fMRT. Intellektual'nye sistemy. Teoriya i prilozheniya. 2021. T. 25. Vyp. 4. C. 310–316. EDN: EUQSLH. URL: https://www.mathnet.ru/ links/86490e6cd1f908438a096ec4b2431098/ista471.pdf.
  42. Zhemchuzhnikov A.D., Kartashov S.I., Kozlov S.O., Orlov V.A., Pojda A.A., Zaharova N.V., Bravve L.V., Mamedova G.Sh., Kajdan M.A. Poisk naibolee informativnyh regionov dlya binarnoj klassifikacii shizofrenii po dannym fMRT sostoyaniya pokoya na osnove metoda vydeleniya funkcional'no odnorodnyh regionov. Zhurnal vysshej nervnoj deyatel'nosti im. I.P. Pavlova. 2024. T. 74. № 4. C. 412–425. https://doi.org/10.31857/S0044467724040035 EDN: AEGOFV.
Date of receipt: 16.07.2025
Approved after review: 28.07.2025
Accepted for publication: 10.11.2025