350 rub
Journal Biomedical Radioelectronics №6 for 2024 г.
Article in number:
Development of a digital system for assessing a person’s physiological status
Type of article: scientific article
DOI: 10.18127/j15604136-202406-07
UDC: 602.1
Authors:

A.E. Shupenev1, A.V. Shcherbachev2, I.A. Kudashov3, A.R. Alexandrov4, O.I. Apolikhin5, A.N. Govorin6

1–6 Bauman Moscow State Technical University (Moscow, Russia)
1 ash@bmstu.ru, 2 shcherbachev_av@bmstu.ru, 3 kudashov@bmstu.ru,
4 aleksandrey99@gmail.com, 5 apolihinoi@bmstu.ru, 6 govorin75@gmail.com

Abstract:

Today, the World Health Organization reports more than 1.5bn. people all over the world who are already actively using mobile health applications. In addition, according to statistics provided by the World Health Organization, it is emphasized that continuous monitoring of health status through the use of wearable devices plays a significant role in modern medical practice. Research shows that M-Health systems reduce the likelihood of complications and improve the quality of care

E-health technologies can significantly improve the quality of health services and ensure value creation for all stakeholders (patients, doctors, health managers, regulators, etc.) in this regard, it is advisable to actively introduce them into modern medical practice.

Pages: 77-83
For citation

Shupenev A.E., Shcherbachev A.V., Kudashov I.A., Alexandrov A.R., Apolikhin O.I., Govorin A.N. Development of a digital system for assessing a person’s physiological status. Biomedicine Radioengineering. 2024. V. 27. № 6. P. 77–83. DOI: https:// doi.org/10.18127/ j15604136-202406-07 (In Russian)

References
  1. Longato E., Fadini G.P., Sparacino G., Gubian L. and Di Camillo B. Prediction of Cardiovascular Complications in Diabetes from Pharmacy Administrative Claim. 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON). Palermo. Italy. 2020. Р. 315–320.
  2. Lagani L., Koumakis V., Chiarugi F., Lakasing E. and Tsamardinos. I. A systematic review of predictive risk models for diabetes complications based on large scale clinical studies. Diabetes and its Complications. 2013. V. 27. № 4. P. 407–413.
  3. Longato E., Fadini G. P., Sparacino G., Gubian L. and Di Camillo B. A Deep Learning Approach to Predict Diabetes’ Cardiovascular Complications From Administrative Claims. Biomedical and Health Informatics. 2021. V. 25. № 9. P. 3608–3617.
  4. Uma M.V., Kalaiselvi A., Priyanka K. and Haritha J. Implementation of Patient E-Health Monitor-ing System using Mobile Applications. 2022 International Conference on Emerging Trends in En-gineering and Medical Sciences (ICETEMS). 2022. Nagpur. India. 2022. P. 158–162.
  5. Bellos C., Papadopoulos A., Rosso R. and Fotiadis D. Identification of copd patients’ health status using an intelligent system in the chronious wearable platform. Biomedical and health informatics. 2013. V. 18. №. 3. P. 731–738.
  6. Nikhil Nair R and Kiran K.A. Smart Secure System For Human Health Monitoring. International Conference on Intelligent Computing and Control Systems ICICCS. 2017 P. 523–526.
  7. Jayapradha T.S. and Durai Raj Vincent P.M. An IOT based Human healthcare system using Arduino Uno board. International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). 2017. P. 880–885.
  8. Kudashov. I., Shchukin. S., Al-Harosh M., Shcherbachev A. Smart Bio-Impedance-Based Sensor for Guiding Standard Needle Insertion» Sensors. 2022. 22(2). 665.
  9. Shcherbachev A.V., Kudashov I.A., Shchukin S.I., Itkin G.P., Galyamov A.Z., Bychkov E.A. Razrabotka elektrodnoj sistemy dlya nepreryvnogo izmereniya ob"ema iskusstvennogo zheludochka serdca. Biomedicinskaya radioelektronika. 2021. T. 24. № 5. Р. 41–46.
  10. Kobelev A.V., Shchukin S.I. Anthropomorphic prosthesis control based on the electrical impedance signals analysis. Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). 2018. P. 33–36.
  11. Shcherbachev A.V., Kudashov I.A., Itkin G.P., Bychkov E.A., Galiamov A.Z. Development of the Unit for Measuring the Hydrodynamic Parameters of AHV. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). Yekaterinburg, Russia. 7–8 May 2020. P. 36–39.
  12. Shcherbachev A.V., Kudashov I.A., Itkin G.P., Bychkov E.A., Govorin A.N. Approksimacionnaya model' dlya izmereniya konechnogo diastolicheskogo ob"yoma iskusstvennogo zheludochka serdca. Biomedicinskaya radioelektronika. 2022. T. 25. № 5. S. 32–38.
  13. Shcherbachev A.V., Kudashov I.A., Itkin G.P., Bychkov E.A., Galiamov A.Z. Determination of Electrode Assembly Parameters for Electroimpedance Measurement of AHV Volume. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). 2021. P. 0125–0128.
  14. Shcherbachev A.V., Bychkov E.A., Kudashov I.A., Volkov A.K. Research coaxial needle electrode characteristics for the automated vein puncture control system. Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). 2018. P. 37–41.
Date of receipt: 14.10.2024
Approved after review: 30.10.2024
Accepted for publication: 20.11.2024