350 rub
Journal Biomedical Radioelectronics №6 for 2024 г.
Article in number:
On the issue of probing depth of tetrapolar electrode systems in electrical impedance myography
Type of article: scientific article
DOI: 10.18127/j15604136-202406-01
UDC: 615.477.2
Authors:

A.V. Kobelev1, A.N. Briko2, S.I. Shchukin3

1–3 Moscow Bauman State Technical University (Moscow, Russia)
1 briko@bmstu.ru

Abstract:

Background. The contribution of biological tissues at different depths to the electrical impedance signal depends on the geometry of the electrode system. The areas located in the immediate vicinity of the electrodes have the greatest influence on the measured signal, but to optimize the design, it is necessary to understand the ultimate capabilities of the electrode system in terms of "depth sensitivity". In electrical exploration, the effective depth of exploration, reflecting the capabilities of the electrode system, is estimated by the effective probing depth. This approach leads to contradictions. In foreign literature, the "median depth of exploration" according to Edwards is used – this is the depth below which half of the total power from the current source is dissipated. The obtained estimates of the "median depth" are 4-5 times smaller than the dimensions of the electrode system and do not allow us to estimate the ultimate capabilities of the electrode system in depth.

Aim. To analyze existing approaches to assessing the sensitivity of tetrapolar electrode systems depending on the depth of the study area, identify existing contradictions and propose a way to eliminate them.

Results. A new concept is introduced – the event horizon of the electrode system, which characterizes its capabilities for studying heterogeneities at a certain depth. The concept of the event horizon depends on the location of both the current and measuring electrodes and satisfies the principle of reciprocity. The results of experimental verification of the obtained analytical expressions are presented.

Practical significance. The obtained results can be applied in the development of tetrapolar electrode systems for electrical impedance studies.

Pages: 5-19
For citation

Kobelev A.V., Briko A.N., Shchukin S.I. On the issue of probing depth of tetrapolar electrode systems in electrical impedance myography. Biomedicine Radioengineering. 2024. V. 27. № 6. P. 5–19. DOI: https:// doi.org/10.18127/j15604136-202406-01 (In Russian)

References
  1. Sanchez B. et al. Electrical Impedance Myography: A Critical Review and Outlook. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology. 2021. V. 132. № 2. P. 338–344.
  2. Rutkove S.B. et al. Reference values for 50‐kHz electrical impedance myography. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. Wiley Online Library, 2008. V. 38. № 3. P. 1128–1132.
  3. Baisakhiya S., Ganeasn R., Das S.K. IEC 60601-1-2, 2001: new EMC requirements for medical equipment. 8th International Confer-ence on Electromagnetic Interference and Compatibility. IEEE. 2003. P. 409–414.
  4. GOST R MEK 60601-1-2010 «Izdeliya medicinskie elektricheskie». Chast'. 2010.
  5. Grimnes S. Bioimpedance and Bioelectricity Basics. Boston, MA: Elsevier, 2014.
  6. Sanchez B., Rutkove S.B. Present Uses, Future Applications, and Technical Underpinnings of Electrical Impedance Myography. 72. 2017. V. 17. № 11. P. 86.
  7. Geddes L.A. Who introduced the tetrapolar method for measuring resistance and impedance? IEEE Engineering in Medicine and Bio­logy Magazine. IEEE. 1996. V. 15. № 5. P. 133–134.
  8. Ragheb A.O. et al. Tetrapolar electrode system for measuring physiological events by impedance. Medical and Biological Engineering and Computing. Springer, 1992. V. 30. № 1. P. 115–117.
  9. Grimnes S., Martinsen Ø.G. Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. Journal of Physics D: Applied Physics. 2007. V. 40. № 1. P. 9–14.
  10. Tarulli A.W. et al. Impact of skin-subcutaneous fat layer thickness on electrical impedance myography measurements: An initial as-sessment. Clinical Neurophysiology. 2007. V. 118. № 11. P. 2393–2397.
  11. Shiffman C.A. et al. Resistivity and phase in localized BIA. Physics in Medicine & Biology. IOP Publishing, 1999. V. 44. № 10. P. 2409.
  12. Aaron R., Shiffman C.A. Using localized impedance measurements to study muscle changes in injury and disease. Annals of the New York Academy of Sciences. Blackwell Publishing Ltd Oxford, UK, 2000. V. 904. № 1. P. 171–180.
  13. Faes T.J.C. et al. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiological Mea­s-urement. IOP Publishing, 1999. V. 20. № 4. P. R1–R10.
  14. Foster K.R., Lukaski H.C. Whole-body impedance--what does it measure? The American journal of clinical nutrition. Oxford Uni-versity Press, 1996. V. 64. № 3. P. 388S–396S.
  15. Rutkove S.B. Electrical impedance myography: Background, current state, and future directions. Muscle & nerve. 2009. V. 40. № December. P. 936–946.
  16. Chin A.B. et al. Optimizing measurement of the electrical anisotropy of muscle. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. Wiley Online Library, 2008. V. 37. № 5. P. 560–565.
  17. Kolesnikov V.P. Osnovy interpretacii elektricheskih zondirovanij. M.: Nauchnyj mir. 2007.
  18. Matveev B.K. Elektrorazvedka: Ucheb. posobie. M.: Nedra. 1990.
  19. Zhdanov M.S. Elektrorazvedka: Ucheb. dlya vuzov. M.: Nedra. 1986.
  20. Akulenko S.A., Berezina S.A., Bobachev A.A. Elektrorazvedka metodom soprotivlenij: Ucheb. posobie / Pod red. Hmelevskogo i Shevnina. M.: MGU. 1994.
  21. Carson J.R. A generalization of the reciprocal theorem. The Bell System Technical Journal. Nokia Bell Labs, 1924. V. 3. № 3. P. 393–399.
  22. Altman C., Suchy K. Reciprocity, spatial mapping and time reversal in electromagnetics. Springer Science & Business Media, 2011.
  23. Tai C.-T. Complementary reciprocity theorems in electromagnetic theory. University of Michigan. Radiation Laboratory, 1991.
  24. Apparao A., Rao T.G. Depth of investigation in resistivity methods using linear electrodes. Geophysical Prospecting. Wiley Online Lib­rary, 1974. V. 22. № 2. P. 211–223.
  25. Edwards L. A modified pseudosection for resistivity and IP. Geophysics. Society of Exploration Geophysicists, 1977. V. 42. № 5. P. 1020–1036.
  26. Schlumberger C. Premières experiences. Carte des courbes équipotentielles, tracées au courant continu Val-Richer (Calvados). 1912.
  27. Wenner F. A method for measuring earth resistivity Washington (USA). Journal of the Washington Academy of Sciences. 1915. V. 5. № 16. P. 561–563.
  28. Kobelev A., Shchukin S., Leonhardt S. Application of tetrapolar electrode systems in electrical impedance measurements. Biomedical Engineering. Springer US, 2019. V. 52. № 6. P. 383–386.
  29. Zaborovskij A.I. Elektrorazvedka. M.: Gostoptekhizdat. 1963.
  30. Apéry R. Irrationalité de ζ (2) et ζ (3. Astérisque. 1979. V. 61. № 11–13. P. 1.
  31. Martinsen O.G., Grimnes S. Bioimpedance and bioelectricity basics. Academic press, 2011.
  32. Briko A.N., Kobelev A.V., Shchukin S.I. Electrodes Interchangeability during Electromyogram and Bioimpedance Joint Recording. 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). Yekaterinburg: IEEE, 2018. P. 17–20.
  33. Briko A. et al. A Way of Bionic Control Based on EI, EMG, and FMG Signals: 1. 172. Multidisciplinary Digital Publishing Institute, 2021. V. 22. № 1. P. 152.
  34. Kusche R., Ryschka M. Combining Bioimpedance and EMG Measurements for Reliable Muscle Contraction Detection. IEEE Sensors Journal. IEEE, 2018. V. 19. № 23. P. 11687–11696.
Date of receipt: 20.09.2024
Approved after review: 11.10.2024
Accepted for publication: 20.11.2024