350 rub
Journal Biomedical Radioelectronics №3 for 2024 г.
Article in number:
Methodological approaches to assessing the impact of electromagnetic fields of the radio frequency range on children and adolescents
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202403-03
UDC: 57.042+57.049+614
Authors:

N.I. Khorseva1, P.E. Grigoriev2

1 FGBUN) Institute of Biochemical Physics. N.M. Emanuel RAS (Moscow, Russia)
2 Sevastopol State University (Sevastopol, Russia)
1 sheridan1957@mail.ru; 2 grigorievpe@cfuv.ru

Abstract:

Statement of the problem: the rapid development of telecommunication technologies, which include cellular communications, raises numerous questions about the possible negative effects of electromagnetic radiation on children and adolescents, as the most susceptible and vulnerable to any environmental factors.

Purpose: to consider methodological approaches to methods of recording exposure to electromagnetic fields of the radio frequency range (EMF RF) (base stations, Wi-Fi, mobile phones) and electronic learning aids (ETS) exclusively for children and adolescents, including the actively introduced millimeter-wave EMF RF.

Results: options for modeling the impact of RF EMF are presented, controversy regarding the assessment of the level using indicators of energy flux density (PFE) and specific absorption rate (SAR), various methods for registering electromagnetic load from base stations, Wi-Fi, mobile phones, electronic learning aids.

Practical significance: the accumulated data can be the basis not only for assessing the electromagnetic safety of modern telecommunications for the younger generation, but for developing a special SanPiN for children and adolescents, assessing the electromagnetic environment in residential and educational institutions, including against the background of the active introduction of digital learning tools.

Pages: 28-43
For citation

Khorseva N.I., Grigoriev P.E. Methodological approaches to assessing the impact of electromagnetic fields of the radio frequency range on children and adolescents. Biomedicine Radioengineering. 2024. V. 27. № 3. P. 28–43. DOI: https://doi.org/10.18127/ j15604136-202403-03 (In Russian)

References
  1. A Rationale for Biologically-based Public Exposure Standards for Electromagnetic Fields (ELF and RF) Available at: https://bio-initiative.org Accessed August 26. 2021
  2. Available at: https://sdg.iisd.org/news/who-european-ministerial-conference-on-environment-and-health-convenes / Accessed August 26, 2021
  3. Grigor'ev Yu.G., Grigor'ev O.A. Sotovaya svyaz' i zdorov'e: elektromagnitnaya obstanovka, radiobiologicheskie i gigienicheskie problemy, prognoz opasnosti. FGBU GNC FMBC im. A.I. Burnazyana FMBA Rossii. M.: Ekonomika. 2013. 567 s.
  4. Grigor'ev Yu.G., Horseva N.I. Mobil'naya svyaz' i zdorov'e detej. Ocenka opasnosti primeneniya mobil'noj svyazi det'mi i podrostkami. Rekomendacii detyam i roditelyam. M.: Ekonomika. 2014. 230 s.
  5. Grigor'ev Yu.G., Samojlov A.S. 5G-standart sotovoj svyazi. Summarnaya radiobiologicheskaya ocenka opasnosti planetarnogo elektromagnitnogo oblucheniya naseleniya. M.: FGBU GNC FMBC im. A.I. Burnazyana FMBA Rossii, 2021. 220 s.
  6. Grigoriev Yu.G. Chapter 9. Radiobiological Arguments for Assessing the Electromagnetic Hazard to Public Health for the Beginning of the Twenty-First Century: The Opinion of the Russian Scientist. In book Mobile Communications. Ed. Marko Markov. 2019. Fran-cis Group, LLC. P. 223–236.
  7. Grigor'ev Yu.G., Samojlov A.S., Bushmanov A.Yu., Horseva N.I. Mobil'naya svyaz' i zdorov'e detej: problemy tret'ego tysyacheletiya. Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2017. T. 62. № 2. S. 39–46. DOI: 10.12737/article_58f0b9573b6b59.54629416
  8. Grigor'ev Yu.G. Mobil'naya svyaz' i elektromagnitnyj haos v ocenke opasnosti dlya zdorov'ya naseleniya. Kto neset otvetstvennost'? Radiacionnaya biologiya. Radioekologiya. 2018. T. 58. № 6. S. 633–645. DOI: 10.1134/S086980311806005X
  9. Grigor'ev Yu.G. Mobil'naya svyaz' i elektromagnitnaya opasnost' dlya zdorov'ya naseleniya. Sovremennaya Ocenka riska – ot elektromagnitnogo smoga do elektromagnitnogo haosa (obzor literatury). Vestnik novyh medicinskih tekhnologij. 2019. T. 26. № 2. S. 88–95. DOI: 10.1134/S086980311806005X
  10. Grigor'ev Yu. G. Znachimost' adekvatnoj informacii po ocenke opasnosti EMP sotovoj svyazi dlya zdorov'ya naseleniya (pervaya chetvert' XXI veka). Radiacionnaya biologiya. Radioekologiya. 2020. T. 60. № 5. S. 532–540. DOI: 10.31857/S08698 03120050045
  11. Grigor'ev Yu.G. Standart 5G – tekhnologicheskij skachok vpered v sotovoj svyazi: budet li problema so zdorov'em u nasele-niya? (pogruzhenie v problemu). Radiacionnaya biologiya. Radioekologiya. 2020. T. 60. № 6. S. 627–634. DOI: 10.31857/S08 69803120060181
  12. Grigor'ev O.A., Goshin M.E., Prokof'eva A.V. i dr. Osobennosti nacional'noj politiki, opredelyayushchej podhody k gigienicheskomu normirovaniyu elektromagnitnogo polya radiochastot v razlichnyh stranah. Gigiena i sanitariya. 2019. T. 98. № 11. S. 1184–1190. DOI: http://dx.DOI.org/10.18821/0016-9900-2019-98-11-1184-1190
  13. Petin V.G., Grigor'ev O.A., Merkulov A.V., Grigor'ev Yu.G. i dr. Ob odnom rossijskom termine (perevode SAR) v dozimetrii elektro­magnitnogo polya radiochastotnogo diapazona. Radiacionnaya biologiya. Radioekologiya. 2012. T. 52. № 5. S. 542–545.
  14. Pohodzej L.V., Pal'cev Yu.P., Kur'erov N.N., Bogacheva E.V. Novoe v gigienicheskoj ocenke elektromagnitnoj obstanovki na komp'yuterizirovannyh rabochih mestah. Medicina truda i promyshlennaya ekologiya. 2015. № 7. S. 27–31.
  15. Perov S.Yu. Eksperimental'naya dozimetriya radiochastotnyh elektromagnitnyh polej personal'nyh sredstv svyazi v gigienicheskom normirovanii (obzor literatury). Vestnik novyh medicinskih tekhnologij. 2011. T. HVIII. № 2. S. 286–288.
  16. Sposob izmereniya plotnosti potoka energii elektromagnitnogo izlucheniya ot mobil'nogo telefona RU 2 626 049 S1, MPK G01R 33/00/ Babalyan A.V., Karelin A.O., Starun R.G. zayavl. 09.03.2016; opubl. 21.07.2017. Byul. Federal'noj sluzhby po intellektual'noj sobstvennosti (Rospatent). M.: FIPS. 2017. № 21.
  17. Vtornikova N.I., Babalyan A.V., Karelin A.O., Ivanov V.A. Ocenka intensivnosti elektromagnitnogo izlucheniya mobil'nyh telefonov, vozdejstvuyushchego na golovu cheloveka. Uchenye zapiski SPbGMU im. akad. I.P. Pavlova. 2017. T. 24. № 4. S. 75–81. DOI: 10.24884/1607-4181-2017-24-4-75-81
  18. Christ A., Kuster N. Differences in RF energy absorption in the heads of adults and children. Bioelectromagnetics. 2005. Suppl 7. P. 31–44. DOI: 10.1002/bem.20136
  19. Dimbylow P., Bolch W. Whole-body-averaged SAR from 50 MHz to 4 GHz in the University of Florida child voxel phantoms. Phys Med Biol. 2007. V. 52. № 22. P. 6639–6649. DOI: 10.1088/0031-9155/52/22/006
  20. Beard B.B., Kainz W. Review and standardization of cell phone exposure calculations using the SAM phantom and anatomically correct head models Meta-Analysis. Biomed Eng Online. 2004. V. 3. № 1:34. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC526755/ pdf/1475-925X-3-34.pdf (data obrashcheniya 03.02.2023). DOI: 10.1186/1475-925X-3-34
  21. Dimbylow P., Bolch W., Lee C. SAR calculations from 20 MHz to 6 GHz in the University of Florida newborn voxel phantom and their implications for dosimetry. Phys Med Biol. 2010. V. 55. № 5. P. 1519–1530. DOI: 10.1088/0031-9155/55/5/017
  22. Findlay R.P., Dimbylow P.J. SAR in a child voxel phantom from exposure to wireless computer networks (Wi-Fi). Phys Med Biol. 2010. V. 55. № 15. P. 405–411. DOI: 10.1088/0031-9155/55/15/N01
  23. Gandhi O.P., Kang G. Calculation of induced current densities for humans by magnetic fields from electronic article surveillance devices. Phys Med Biol. 2001. V. 46. № 11. P. 2759–2771. DOI: 10.1088/0031-9155/46/11/301
  24. Gandhi O.P. Electromagnetic fields: human safety issues. Annu Rev Biomed Eng. 2002. V. 4. P. 211–234. DOI: 10.1146/annurev. bioeng.4.020702.153447
  25. Gandhi O.P., Morgan L.L., de Salles A.A., Han Y.Y. et al. Exposure limits: the underestimation of absorbed cell phone radiation, especially in children. Electromagn Biol Med. 2012. V. 31. № 1. P. 34–51. DOI: 10.3109/15368378.2011.622827
  26. Gandhi O.P., Kang G. Some present problems and a proposed experimental phantom for SAR compliance testing of cellular tele-phones at 835 and 1900 MHz. Phys Med Biol. 2002. V. 47. N 9. P. 1501–1518. DOI: 10.1088/0031-9155/47/9/306
  27. Keshvari J., Lang S. Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz. Phys Med Biol. 2005. V. 50. N 18. P. 4355–4369. DOI: 10.1088/0031-9155/50/18/008
  28. Keshvari J., Keshvari R., Lang S. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure. Phys Med Biol. 2006. V. 51. N 6. P. 1463–1477. DOI: 10.1088/ 0031-9155/51/6/007
  29. Wiart J., Hadjem A., Gadi N., Bloch I. et al. Modeling of RF head exposure in children. Review. Bioelectromagnetics. 2005. Suppl 7. P. 19–30. DOI: 10.1002/bem.20155
  30. Wiart J., Hadjem A., Wong M.F., Bloch I. Analysis of RF exposure in the head tissues of children and adults. Phys Med Biol. 2008. V. 53. № 13. P. 3681–3695. DOI: 10.1088/0031-9155/53/13/019
  31. Cabré-Riera A., El Marroun H., Muetzel R. Estimated whole-brain and lobe-specific radiofrequency electromagnetic fields doses and brain volumes in preadolescents // Environ Int. 2020. V.142:105808. DOI: 10.1016/j.envint.2020.105808
  32. Birks L.E., van Wel L., Liorni I. et al. Radiofrequency electromagnetic fields from mobile communication: Description of modeled dose in brain regions and the body in European children and adolescents Environ Res. 2021. V193:110505. DOI: 10.1016/j.envres. 2020.110505
  33. Cabré-Riera A., van Wel L., Liorni I. et al. Association between estimated whole-brain radiofrequency electromagnetic fields dose and cognitive function in preadolescents and adolescents. Int. J. Hyg Environ Health. 2021. V. 193. P. 110505. DOI: 10.1016/j.ijheh. 2020.113659
  34. Sacco G., Pisa S., Zhadobov M. Age-dependence of electromagnetic power and heat deposition in near-surface tissues in emerging 5G bands. Sci Rep. V. 11. № 1. P. 12724. DOI:10.1038/s41598-021-92059-5
  35. Potapov A.A. Metod operativnogo issledovaniya nelinejnyh variacij nizkochastotnyh magnitnyh polej s primeneniem geoinformacionnyh tekhnologij. Nelinejnyj mir. 2012. T. 10. № 1. S. 3–10.
  36. Grigor'ev O.A. Radiobiologicheskaya ocenka vozdejstviya elektromagnitnogo polya podvizhnoj sotovoj svyazi na zdorov'e naseleniya i upravlenie riskami: Avtoref. na soiskanie uchenoj step. d.biol.n. 03.01.01. – radiobiologiya. M., 2012. 46 s.
  37. Potapov A.A. Metody mul'timasshtabnogo monitoringa volnovyh polej vysokogo razresheniya na platforme cifrovyh problemno-orientirovannyh modelej: avtoref. na soiskanie uchenoj stepeni d.t.n. 05.11.13 – pribory i metody kontrolya prirodnoj sredy, veshchestv, materialov i izdelij. M., 2013. 48 s.
  38. Vasil'ev N.V., Buhanov V.O., Vasil'ev V.A. Osobennosti i rezul'taty monitoringa EMP v usloviyah territorij Samarskoj oblasti. Izvestiya Samarskogo nauchnogo centra RAN. 2013. T. 15. № (3–1). S. 585–590.
  39. Zaharov P.N., Korolev A.F., Potapov A.A., Turchaninov A.V. Metod operativnogo monitoringa elektromagnitnyh polej radiochastotnogo diapazona vnutri i vblizi zdanij s primeneniem sistem geoprostranstvennogo modelirovaniya. Nelinejnyj mir. 2015. № 5. S. 18–26.
  40. Vasil'ev A.V. Modelirovanie, raschet vneshnih istochnikov i sostavlenie kart elektromagnitnyh polej. Izvestiya Samarskogo nauchnogo centra RAN. 2015. № 2–5. URL: https://cyberleninka.ru/article/n/modelirovanie-raschet-vneshnih-istochnikov-i-sostavlenie-kart-elektromagnitnyh poley (data obrashcheniya: 05.05.2023).
  41. Parheta K.A. Chernikov V.D., Zelenin D.O. Sravnitel'nyj analiz elektromagnitnogo izlucheniya ot bazovyh stancij sotovoj svyazi, Wi-Fi routerov i mobil'nyh telefonov / Fundamental'naya nauka v sovremennoj medicine – 2018: sb. mater. sattelitnoj distancion. nauch.-prakt. konf. studentov i molodyh uchenyh. Minsk: BGMU. 2018. S. 201–205.
  42. Maslov O.N., Ryabushkin A.V., Maslov S.A., Frolova M.A. Elektromagnitnaya bezopasnost': ot pasportizacii ob"ektov k analizu sos­toyaniya territorij. Elektromagnitnye volny i elektronnye sistemy. 2021. T. 26. № 2. S. 5−16. DOI: https://DOI.org/10.18127/ j15604128-202102-01
  43. Potapov A.A. Radiomonitoring nizkourovnevyh radiosignalov posredstvom analiza periodicheskih spektral'nyh vyborok. Nelinejnyj mir. 2021. T. 19. № 3. S. 5–17. DOI 10.18127/j20700970-202103-01
  44. Lucenko L.A., Tulakin A.V., Egorova A.M. Mikailova V.N. i dr. Risk-orientirovannaya model' kontrolya urovnej EMP bazovyh stancij sotovoj svyazi. Gigiena i sanitariya. 2016. T. 95. № 11. S. 1045–1048. DOI: 10.18821/0016-9900-2016-95-11-1045-1048
  45. Grigor'ev O.A., Zubarev Yu.B. Sanitarno-epidemiologicheskoe normirovanie EMP RCh, sozdavaemogo elementami sotovoj radiosvyazi. Naukoemkie tekhnologii. 2017. № 5. S. 72–76.
  46. Di Ciaula A. Towards 5G communication systems: Are there health implications. Int. J. Hyg Environ Health. 2018. Apr. 221. № 3. P. 367–375. DOI: 10.1016/j.ijheh.2018.01.011
  47. Tlyauberdina A.Sh. Osobennosti ekspluatacii 5G sistem na selitebnoj territorii. Regional'naya nauchno-metodicheskaya konferenciya magistrantov i ih rukovoditelej. Sb. dokladov konf. SPb., 2021. S. 142–147.
  48. Vermeeren G., Markakis I., Goeminne F. Samaras T. et el. Spatial and temporal RF electromagnetic field exposure of children and adults in indoor micro environments in Belgium and Greece. Prog Biophys Mol Biol. 2013. V. 113. N 2. P. 254–263. DOI: 10.1016/j.pbiomolbio. 2013.07.002
  49. Kiouvrekis Y., Manios G., Tsitsia V., Gourzoulidis G. et al. A statistical analysis for RF-EMF exposure levels in sensitive land use: A novel study in Greek primary and secondary education schools. Environ Res. 2020. 191:109940. DOI: 10.1016/ j.envres.2020.109940
  50. Bhatt C.R., Redmayne M., Billah B., Abramson M.J. et al. Radiofrequency-electromagnetic field exposures in kindergarten children.
    J. Expo Sci Environ Epidemiol. 2017. V. 27. № 5. P. 497–504. DOI: 10.1038/jes.2016.55
  51. Chiaramello E., Bonato M., Fiocchi S., Tognola G. et al. Radio Frequency Electromagnetic Fields Exposure Assessment in Indoor Environments: A Review. Int. J. Environ. Res. Public Health. 2019. № 16. P. 955–984. DOI: 10.3390/ijerph16060955
  52. Gallastegi M., Guxens M., Jiménez-Zabala A., Calvente I. et al. Characterisation of exposure to nonionising electromagnetic fields in the Spanish INMA birth cohort: study protocol BMC. Public Health. 2016. № 16. P. 167. DOI: 10.1186/s12889-016-2825-3
  53. Gallastegi M., Huss A., Santa-Marina L., Aurrekoetxea J.J. et al. Children\'s exposure assessment of radiofrequency fields: Comparison between spot and personal measurements Environ. Int. 2018. № 118. P. 60–69. DOI: 10.1016/j.envint.2018.05.028
  54. Roser K., Schoeni A., Struchen B., Zahner M. et al. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents. Environ Int. 2017. № 99. P. 303–314. DOI: 10.1016/j.envint.2016.12.008
  55. Choi J., Hwang J.-H., Lim H., Joo H. et al. Assessment of radiofrequency electromagnetic field exposure from personal measurements considering the body shadowing effect in Korean children and parents. Sci Total Environ. 2018. № 627. P. 1544–1551. DOI: 10.1016/ j.scitotenv
  56. Birks L.E., Struchen B., Eeftens M. van Wel L. et al. Spatial and temporal variability of personal environmental exposure to radio fre-quency electromagnetic fields in children in Europe. Environ Int. 2018. № 117. P. 204–214. DOI: 10.1016/j.envint.2018.04.026
  57. Huss A., van Eijsden M., Guxens M., Beekhuizen J. et al. Environmental Radiofrequency Electromagnetic Fields Exposure at Home, Mobile and Cordless Phone Use, and Sleep Problems in 7-Year-Old Children. PLoS One. 2015. V. 10. № 1:e0139869. DOI: 10.1371/ journal. pone.0139869
  58. Schoeni A., Roser K., Bürgi A., Röösli M. Symptoms in Swiss adolescents in relation to exposure from fixed site transmitters: a pro-spective cohort study. Environ Health. 2016. V. 15. N 1. P. 7. DOI: 10.1186/s12940-016-0158-4
  59. Guxens M., Vermeulen R., van Eijsden M., Beekhuizen J. et al. Outdoor and indoor sources of residential radiofrequency electromagnetic fields, personal cell phone and cordless phone use, and cognitive function in 5-6 years old children. Environ Res. 2016. № 150. P. 364–374. DOI: 10.1016/j.envres.2016.06.021
  60. Velghe M., Aerts S., Martens L. et al. Protocol for personal RF-EMF exposure measurement studies in 5th generation telecommunica­tion networks. Environ Health. 2021. V. 20. N 1:36. DOI: 10.1186/s12940-021-00719-w
  61. Burlakova E.B., Konradov A.A., Mal'ceva E.L. Dejstvie sverhmalyh doz biologicheski aktivnyh veshchestv i nizkointensivnyh fizicheskih faktorov. Himicheskaya fizika. 2003. T. 22. № 2. S. 21–40.
  62. Karipidis K., Henderson S., Wijayasinghe D., Tjong L. et al. Exposure to Radiofrequency Electromagnetic Fields From Wi-Fi in Australian Schools. Radiat Prot Dosimetry. 2017. V. 175. №. 4. P. 432–439. DOI: 10.1093/rpd/ncw370
  63. Ramirez-Vazquez R., Arabasi S., Al-Taani H., Sbeih S. et al. Georeferencing of Personal Exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a University Area. Int J. Environ Res Public Health. 2020. V. 17. № 6:1898. DOI: 10.3390/ ijerph17061898
  64. Ramirez-Vazquez R., Gonzalez-Rubio J., Escobar I. Suarez Rodriguez CDP. et al. Personal Exposure Assessment to Wi-Fi Radiofre-quency Electromagnetic Fields in Mexican Microenvironments. Int. J. Environ Res Public Health. 2021. V. 18. № 4:1857. DOI: 10.3390/ ijerph18041857
  65. Hedendahl L.K, Carlberg M., Koppel T., Hardell L. Measurements of Radiofrequency Radiation with a Body-Borne Exposimeter in Swedish Schools with Wi-Fi. Front. Public Health. 2017. № 5. P. 1–14.
  66. Verloock L., Joseph W., Goeminne F., Martens L. et al. Assessment of radio frequency exposures in schools, homes, and public places in Belgium. Health Phys. 2014. V. 107. № 6. P. 503–13. DOI: 10.1097/HP.0000000000000149
  67. Magiera A., Solecka J. Radiofrequency electromagnetic radiation from Wi-Fi and its effects on human health, in particular children and adolescents. Review Rocz Panstw Zakl Hig. 2020. V. 71. № 3. P. 251–259. DOI: 10.32394/rpzh.2020.0125
  68. Zelenin D.O., Nemceva N.V., Zelenina L.V. Sravnitel'nyj analiz elektromagnitnogo izlucheniya ot WI-FI routerov i mobil'nyh telefonov / Materialy X Mezhdunar. stud. nauch. konf. «Studencheskij nauchnyj forum». S. 6–12. M.: Izd. «MCNO». 2017. № 12(51). URL: http://www.nauchforum.ru/archive/MNF_nature/12(51).pdf (data obrashcheniya 04.02.2023).
  69. Mikaelyan G.V Sravnitel'nyj analiz elektromagnitnogo izlucheniya ot WI-FI routerov i sotovyh telefonov. Tezisy doklada XI Vseros. (85-j itogovoj) stud. nauch. konf. s mezhdunar. uchastiem «Studencheskaya nauka i medicina XXI veka: tradicii, innovacii i prioritety». Samara, 2017. S. 233–234.
  70. Mortazavi S A R, Taeb S., Mortazavi S M J., Zarei S. et al. The Fundamental Reasons Why Laptop Computers should not be Used on Your Lap. J. Biomed Phys Eng. 2016. V. 6. № 4. P. 279–284.
  71. Zubarev Yu.B. Mobil'nyj telefon i zdorov'e. 5-e izd. M.: Biblio-Globus. 2020. 254 s. URL: http://ufrolov.blog/wp-content/ uploads/2019/11/ZUBAREV-YuRIJ-MONOGRAFIYa.pdf. (data obrashcheniya 01.09.2022). DOI: 10.18334/9785907063662
  72. Grigor'ev Yu.G., Horseva N.I., Grigor'ev P.E. Shchitovidnaya zheleza – novyj kriticheskij organ vozdejstviya EMP mobil'noj svyazi: ocenka vozmozhnyh posledstvij dlya detej i podrostkov. Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2021. T. 66. № 2. S. 67–76. DOI: 10.12737/1024-6177-2021-66-2-67-75
  73. Musatkina B.V. Problemy normirovaniya i instrumental'nogo kontrolya elektromagnitnogo izlucheniya mobil'nyh telefonov. Sb. nauch. tr. Sworld. 2012. T. 11. № 3. S. 19–22.
  74. Teksheva L.M., Barsukova N.K., Chumicheva O.A. i dr. Gigienicheskie aspekty ispol'zovaniya sotovoj svyazi v shkol'nom vozraste. Gigiena i sanitariya. 2014. T. 93. № 2. S. 60–65.
  75. Bracuk A.A., Ivanova L.A., Yanshina E.R. Zavisimost' velichiny elektromagnitnogo izlucheniya mobil'nyh telefonov ot marki proiz­voditelya i goda vypuska. «Molodoj uchyonyj». 2015. № 22(102). S. 127–130.
  76. Teksheva L.M. Gigienicheskaya klassifikaciya mobil'nyh telefonov. Zdorov'e naseleniya i sreda obitaniya. 2015. № 1(262). S. 11–13.
  77. Vyatleva O.A., Kurganskij A.M. Mobil'nye telefony i zdorov'e detej 6–10 let: znachenie vremennyh rezhimov i intensivnost' izlucheniya. Zdorov'e naseleniya i sreda obitaniya. 2017. № 8 (293). S. 27–30.
  78. Vyatleva O.A., Kurganskij A.M. Osobennosti pol'zovaniya mobil'noj svyaz'yu (intensivnost' izlucheniya, vremennye rezhimy) i vliyanie na pokazateli zdorov'ya u sovremennyh mladshih shkol'nikov. Zdorov'e naseleniya i sreda obitaniya. 2018. № 8(305). S. 51–54.
  79. Vyatleva O.A. Vliyanie dlitel'nogo ispol'zovaniya mobil'nogo telefona u pravogo uha na mezhpolusharnuyu asimmetriyu al'faritma i sluhovuyu pamyat' mladshih shkol'nikov. Zhurnal «Asimmetriya». 2019. T. 13. № 3. S. 28–39. DOI: 10.25692/ ASY.2019.13.3.003
  80. Roser K., Schoeni A., Struchen B. Zahner M. et al. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents. Environ Int. 2017. № 99. P. 303–314. DOI: 10.1016/j.envint.2016.12.008
  81. Schmutz C., Bürgler A., Ashta N., Soenksen J. et al. Personal radiofrequency electromagnetic field exposure of adolescents in the Greater London area in the SCAMP cohort and the association with restrictions on permitted use of mobile communication technolo-gies at school and at home. Environ Res. 2022. V. 212 (Pt B):113252. DOI: 10.1016/j.envres.2022.113252
  82. Safari M., Mosleminiya N., Abdolali A. Thermal mapping on male genital and skin tissues of laptop thermal sources and electromagnetic interaction. Bioelectromagnetics. 2017. V. 38. № 7. P. 550–558. DOI: 10.1002/bem.22068
  83. Siervo B., Morelli M.S., Landini L. et al. Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop. Bioelectromagnetics. 2018. V. 39. № 5. P. 414–422. DOI: 10.1002/bem.22128
  84. Khalid M., Mee T., Peyman A., Addison D. et al. Exposure to radio frequency electromagnetic fields from wireless computer networks: duty factors of Wi-Fi devices operating in schools. Progress in Biophysics and Molecular Biology. 2011. V. 107. № 3. P. 412–420. DOI: 10.1016/j.pbiomolbio.2011.08.004
  85. Yashchenko S.G., Rybalko S.Yu., Pilunskaya O.A., Shibanov S.E. Gigienicheskaya ocenka vliyaniya elektromagnitnyh faktorov kommunikacionnyh ustrojstv na sostoyanie zdorov'ya studentov. Gigiena i sanitariya. 2017. T. 96. № 10. S. 1001–1003. DOI: 10.18821/ 0016-9900-2017-96-10-1001-1003
  86. Yashchenko S.G., Shibanov S.E., Rybalko S.Yu., Grigor'ev O.A. Kompleksnyj podhod k issledovaniyu vliyaniya elektromagnitnyh polej sovremennyh kommunikacionnyh ustrojstv na organizm cheloveka. Gigiena i sanitariya. 2018. T. 97. № 7. S. 618–622. DOI: 10.18821/ 0016-9900-2018-97-7-618-622
  87. Yashchenko S.G., Rybalko S.Yu. Vliyanie elektromagnitnoj ekspozicii ot sredstv informacionno–kommunikacionnyh tekhnologij na cheloveka. Gigiena i sanitariya. 2018. T. 97. № 11. S. 1053–1057. DOI: 10.18821/0016-9900-2018-97-11-1053-57
  88. Mordachev V.I. Harakteristiki elektromagnitnoj obstanovki, sozdavaemoj izlucheniyami abonentskogo oborudovaniya sotovoj (mobil'noj) svyazi ...4G/5G/6G v zdaniyah. Doklady BGUIR. 2021. T. 19. № 6. S. 42–50. DOI: 10.35596/1729-7648-2021-19-6-42-50
  89. Mihutkin A.A., Makar'ev M.E., Zaliev K.Z., Davydov D.A. Dvuhetapnyj metod izmereniya, vizualizacii i identifikacii istochnikov peremennyh elektromagnitnyh polej putem kartirovaniya i spektral'nogo analiza dlya ocenki ih negativnogo vliyaniya na psihofiziologicheskoe sostoyanie detej / Tezisy XVIII Mezhdunar. mezhdiscip. kongressa. M.: MAKS Press. 2022. S. 236. DOI: 10.29003/m2660.sudak.ns2022-18
  90. Grigor'ev O.A. Gigienicheskie problemy ispol'zovaniya det'mi ustrojstv informacionno-komp'yuternyh tekhnologij. Gigiena i sanitariya. 2022. T. 101. № 10. S. 1214–1222. DOI: 10.47470/0016-9900-2022-101-10-1214-1222
Date of receipt: 24.08.2023
Approved after review: 04.09.2023
Accepted for publication: 02.04.2024