350 rub
Journal Biomedical Radioelectronics №2 for 2024 г.
Article in number:
Determination of excitation wave propagation model parameters in myocardial fibrosis
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202402-05
UDC: 004.942: 616.127
Authors:

O.N. Bodin1, F.K. Rakhmatullov2, N.A. Sergeantova3, R.F. Rakhmatullov4, N.E. Kruchinina5, N.V. Lamzin6

1,3,5,6 Penza State Technological University (Penza, Russia)
2,4 Penza State University (Penza, Russia)
1 bodin_o@inbox.ru

Abstract:

Currently, worldwide, cardiovascular diseases are the leading cause of mortality in the population. One of the main components of most cardiovascular diseases progression is fibrosis. To improve the quality and expand the functional capabilities of cardiovascular disease diagnostics, the authors propose to refine the parameters of the Aliev–Panfilov model in cases of myocardial fibrosis foci.

The aim is to determine the parameters of the Aliev–Panfilov model for excitation wave propagation in myocardium with fibrosis within the framework of the proposed modeling approach.

The Aliev–Panfilov model provides information about the damaged areas on the heart surface according to the results of electrocardiac signal analysis. The genesis of myocardial fibrosis is considered. Quantitative parameters of the Aliev–Panfilov model characterizing myocardial fibrosis and responsible for the development of diastolic dysfunction due to a decrease in myocardial elastic properties were obtained. Profiles of excitation pulses for different parameters of the Aliev–Panfilov model were constructed. The process of reverberation occurrence in the damaged myocardial area was investigated. The obtained results increase the efficiency of functional diagnostics due to the representation of the excitation propagation process in the presence of fibrous tissue center.

Practical significance lies in the fact that determination of Aliev–Panfilov model parameters in the process of studying myocardial excitation wave propagation in fibrosis allows to perform more accurate construction of "electrical portrait" patient's heart; to correlate the change of TMPD shape for different anatomical heart sections and change of excitation propagation velocity in myocardium with the process of fibrous tissue formation.

Pages: 36-43
For citation

Bodin O.N., Rakhmatullov F.K., Sergeantova N.A., Rakhmatullov R.F., Kruchinina N.E., Lamzin N.S. Determination of excitation wave propagation model parameters in myocardial fibrosis. Biomedicine Radioengineering. 2024. V. 27. № 2. P. 36−43. DOI: https://doi.org/10.18127/ j19998465-202402-05 (in Russian)

References
  1. Rossijskij statisticheskij ezhegodnik: Stat. sb. M.: Gos. kom. Ros. Federacii po statistike. 2022. 696 s.
  2. Roger V.L., Go A.S., Lloyd- Jones D.M. et al. Executive summary: heart disease and stroke statistics--2012 update: a report from the American Heart Association. in Circulation (2012) 125: 188–97. doi:10.1161/CIR.0b013e3182456d46
  3. Istomina T.V., Petrunina E.V, Istomin V.V, Trub N.V. IOT intelligent system for medical control of the state of operators during their professional activity in extreme situations. AIP Conference Proceedings (2021) 2389.
  4. Karetnikova V.N., Kashtalap V.V., Kosareva S.N., Barbarash O.L. Fibroz miokarda: sovremennye aspekty problemy. Terapevticheskij arhiv. 2017. T. 89. № 1. S. 88–93. DOI 10.17116/terarkh201789188-93
  5. Gizatulina T.P., Pavlov A.V., Mart'yanova L.U. i dr. Associaciya razmerov fibroza levogo predserdiya so strukturnym remodelirovaniem levogo zheludochka u bol'nyh s fibrillyaciej predserdij. Sibirskij medicinskij zhurnal (g. Tomsk). 2019. T. 34. № 2. S. 39–46. DOI 10.29001/ 2073-8552-2019-34-2-39-46
  6. Kramm M.N., Bodin A.Yu., Kruchinina N.E., Serzhantova N.A. Bioelektricheskie osnovy i algoritmy funkcionirovaniya informacionnyh sistem v elektrokardiodiagnostike: Monografiya / Pod red. O.N. Bodina. Penza: Penzenskij gosudarstvennyj tekhnologicheskij universitet. 2023. 290 s.
  7. Okorokov A.N. Diagnostika zabolevanij vnutrennih organov. Tom 6. Diagnostika zabolevanij serdca i sosudov: ateroskleroz. M.: Medicinskaya literatura. 2002.
  8. Orlov V.N., Orlova M.V. Rukovodstvo po elektrokardiografii. M: Izdatel'stvo medicinskogo informacionnogo agentstva, OOO «Izdatel'stvo informacionnogo agentstva». 2023.
  9. Aliev R.R., Panfilov A.V. A simple model of cardiac excitation. Chaos, Solitons &Fractals. 1996. V. 7. № 3. Р. 293–301.
  10. Godunov S.K., Ryaben'kij V.S. Differencial'nye skhemy (vvedenie v teoriyu). Uchebnik. M.: Nauka. 1973.
  11. Bormotov A., Gorokhova A. Modeling the Clustering of Dispersed Systems Using Dynamic Models. Lecture Notes in Civil Engineering (2022) 180: 61–70.
  12. Mitrofanova L.B. Vidy fibroza i ego rasprostranennost' v predserdiyah pri fibrillyacii predserdij na fone ishemicheskoj bolezni serdca i revmatizma. Vestnik aritmologii. 2014. № 75. S. 10–16.
  13. SHevchenko Yu.L., Ul'bashev D.S. Immobiliziruyushchij intersticial'nyj fibroz serdca. CHast' 1. Vestnik Nacional'nogo mediko-hirurgi­cheskogo centra im. N.I. Pirogova. 2022. T. 17. № 2. S. 4–10. DOI: 10.25881/20728255_2022_17_2_4
  14. Standarty lecheniya postinfarktnogo kardioskleroza [Onlajn]. https://serg-crb.ru/serdce/standarty-lecheniya-postinfarktnogo-kardioskleroza.html
Date of receipt: 20.12.2023
Approved after review: 16.01.2024
Accepted for publication: 05.02.2024