A.P. Rytik1, V.V. Tuchin2
1,2 Saratov National Research State University n.a. N.G. Chernyshevsky (Saratov, Russia)
2 Institute of Problems of Precision Mechanics and Control, Federal Research Center «Saratov Scientific Center
of the Russian Academy of Sciences» (Saratov, Russia)
1 ra4csz@ya.ru, 1, 2 tuchinvv@mail.ru
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range of 0.5-100 THz at different levels of power density on living cells. The problem of the safety of this radiation for the human body is also considered, from the point of view of the effect of radiation on the structures and systems of a biological cell. It is known that the rate of cell division is changed by external electromagnetic radiation. The rate of cell division depends on the growth strategy, the availability of nutrient medium, oxygen, temperature, etc. Of fundamental importance are studies of the general patterns of the spatiotemporal dynamics of intensively dividing cells of biological systems and chemical environments, in particular the spatiotemporal dynamics of the division of kidney carcinoma, brain glioma and the Briggs-Rauscher self-oscillatory regime. An important result is the determination of the physical, biochemical and mathematical conditions for the violation of the growth regimes of a cancerous tumor. The cell cycle as an example of an oscillating system has not been fully investigated and is responsible, among other things, for the cooperative acceleration of proliferation. It has now been established that terahertz radiation affects the key mechanism of cell division – the formation of actin protein strands, which is a component of the cell framework of eukaryotic cells. Herbert Frelich suggested that vibrational modes in protein molecules can be ordered and condensed into a low-frequency vibrational mode in a process similar to Bose-Einstein condensation, and, consequently, macroscopic coherence can potentially be observed in biological systems. Recent experimental data on the long-term collective excitation of a protein in the terahertz frequency range have established that by absorbing radiation with a frequency of 0.4 terahertz, protein molecules in a crystal change their electronic state, and with it their structure. Thus, it is generally recognized that there are several mechanisms that determine the effect of the response of living cells to electromagnetic, in particular terahertz radiation.
Rytik A.P., Tuchin V.V. Effects of terahertz radiation on living cells. Biomedicine Radioengineering. 2023. V. 26. № 6. P. 33–46. DOI: https://doi.org/10.18127/ j15604136-202306-05 (In Russian)
- Cherkasova O.P., Serdyukov D.S., Ratushnyak A.S., Nemova, E.F., Kozlov E.N., Shidlovskij Yu.V., Zajcev K.I., Tuchin V.V. Mekhanizmy vliyaniya teragercevogo izlucheniya na kletki (obzor). Optika i spektroskopiya. 2020. T. 128. Vyp. 6. S. 852-864. DOI: 10.21883/OS.2020.06.49420.51-20 (In Russian).
- Romanenko S., Begley R., Harvey A., Hool L., Wallace V. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: Risks and potential. Journal of The Royal Society Interface. 2017. V. 14. P. 0585. DOI 10.1098/rsif.2017.0585.
- Sun Lan, Li Yangmei, Yu Yun, Wang Peiliang, Zhu Shengquan, Wu Kaijie, Liu Yan, Wang Ruixing, Min Li, Chang Chao. Inhibition of Cancer Cell Migration and Glycolysis by Terahertz Wave Modulation via Altered Chromatin Accessibility. Research. 2022. V.16. № 1. P. 60679. DOI:10.34133/2022/9860679.
- Baza dannyh biomedicinskih publikacij https://pubmed.ncbi.nlm.nih.gov/?term= THz&timeline=expanded (In Russian).
- Sajt Vsemirnoj organizacii zdravoohraneniya https://www.vosviewer.com/ products#citation-density-maps (In Russian).
- Sitnikov D.S., Ilina I.V., Pronkin A.A. Experimental system for studying bioeffects of intense terahertz pulses with electric field strength up to 3.5 MV/cm. Opt. Eng. 2020. V. 5(6). P. 061613. DOI: 10.1117/1.OE.59.6.061613.
- Weightman P. Prospects for the study of biological systems with high power sources of terahertz radiation. Phys Biol. 2012. V. 9(5).
P. 053001. DOI: 10.1088/1478-3975/9/5/053001. Epub 2012 Aug 29. PMID: 22931749. - Schroer M.A., Schewa S., Gruzinov A.Y. et al. Probing the existence of non-thermal Terahertz radiation induced changes of the protein solution structure. Sci. Rep. 2021. № 11. P. 22311.
- Smolyanskaya O.A., Chernomyrdin N.V., Konovko A.A., Zaytsev K.I., Ozheredov I.A., Cherkasova O.P., Nazarov M.M., Guillet J.-P., Kozlov S.A., Kistenev Yu. V., Coutaz J.-L., Mounaix P., Vaks V.L., Son J.-H., Cheon H., Wallace V.P., Feldman Yu., Popov I., Yaroslavsky A.N., Shkurinov A.P., Tuchin V.V. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Progress in Quantum Electronics. 2018. V. 62. P. 1–77.
- Sun L., Zhao L., Peng R.Y. Research progress in the effects of terahertz waves on biomacromolecules. Military Med. 2021. Res. 8. P. 28.
- Kolesnikov A.S., Kolesnikova E.A., Popov A.P., Nazarov M.M., Shkurinov A.P., Tuchin V.V. Monitoring degidratacii myshechnoj tkani in vitro pod dejstviem giperosmoticheskih agentov v teragercevom diapazone. Kvantovaya elektronika. 2014. T. 44. № 7. C. 633–640 (In Russian).
- Peltek S., Meshcheryakova I., Kiseleva E., Oshchepkov D., Rozanov A., Serdyukov D., Demidov E., Vasiliev G., Vinokurov N., Bryanskaya A., Bannikova S., Popik V., Goryachkovskaya T. E.-coli aggregation and disruption of cell division after terahertz irradiation. Sci Rep. 2021. October 14. V. 11 (1). P. 20464. DOI: 10.1038/s41598-021-99665-3
- Ramundo O.A., Gallerano G.P. Terahertz Radiation Effects and Biological Application. J. Infrared Milli Terahz Waves. 2009. V. 30. P. 1308–1318.
- Shiraga K., Suzuki T., Kondo N., Tanaka K., Ogawa Y. Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy. Appl. Phys. Lett. 2015. V. 106 (25). P. 253701.
- Comez L., Paolantoni M., Sassi P., Corezzi S., Morresi A., Fioretto D. Molecular properties of aqueous solutions: a focus on the collective dynamics of hydration water. Soft Matter. 2016. V. 12. P. 550. DOI: 10.1039/C5SM03119B
- Yang X., Shi J., Wang Y., Yang K., Zhao X., Wang G., Xu D., Wang Y., Yao J., Fu W. Label-free bacterial colony detection and viability assessment by continuous-wave terahertz transmission imaging. J. Biophotonics. 2018. V. 11. №. 8. P. 00386. DOI: 11. 10.1002/jbio.201700386.
- Xiang Yang, Xiang Zhao, Ke Yang, Yueping Liu, Yu Liu, Weiling Fu, Yang Luo. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends in Biotechnology. 2016. V. 34, Is. 10. P. 810–824.
- Galindo C., Latypova L., Barshtein G., et al. The inhibition of glucose uptake to erythrocytes: microwave dielectric response. Eur Biophys J. 2022. V.51. P. 353–363.
- Ding W., Zhao X., Wang H., Wang, Y., Liu Y., Gong L., Lin S., Liu C., Li Y. Effect of Terahertz Electromagnetic Field on the Permeability of Potassium Channel Kv1.2. Int. J. Mol. Sci. 2023. V. 24. P. 10271.
- Yamazaki, S., Harata, M., Ueno, Y. et al. Propagation of THz irradiation energy through aqueous layers: Demolition of actin filaments in living cells. Sci. Rep. 10, 9008 (2020).
- Yamazaki S., Harata M., Idehara T., et al. Actin polymerization is activated by terahertz irradiation. Sci Rep. 2018. V. 8. P. 9990.
- Takehiro Tachizaki, Reiko Sakaguchi, Shiho Terada, Ken-Ichiro Kamei, Hideki Hirori. Terahertz pulse-altered gene networks in human induced pluripotent stem cells. Opt. Lett. 2020. V. 45. P. 6078–6081.
- Masahiko Harata, Yuya Ueno, Shota Yamazaki et al. Non-thermal effect of terahertz wave radiation on DNA damage repair in living cells. 04 April 2023. PREPRINT (Version 1) available at Research Square.
- Lundholm I.V., Rodilla H., Wahlgren W.Y., Duelli A., Bourenkov G., Vukusic J., Friedman R., Stake J., Schneider T., Katona G. Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal. Struct Dyn. 2015. V. 13. № 2(5). P. 054702. DOI: 10.1063/1.4931825. PMID: 26798828; PMCID: PMC4711649
- Cherkasova O.P. et al. Influence of terahertz laser radiation on the spectral characteristics and functional properties of albumin. Opt. Spectrosc. 2009. V. 107. P. 534. DOI 10.1134/S0030400X09100063
- Cherkasova O.P., Serdyukov D.S., Nemova E.F., Ratushnyak A.S., Kucheryavenko A.S., Dolganova I.N., Xu G., Skorobogatiy M., Reshetov I.V., Timashev P.S., Spektor I.E., Zaytsev K.I., Tuchin V.V. Cellular effects of terahertz wave. J. Biomed Opt. 2021. V. 26. № 9.
P. 090902. DOI:10.1117/1.JBO.26.9.090902.PMID:34595886;PMCID: PMC8483303 - Zhu Z., Chang C., Shu Y., Song B. Transition to a Superpermeation Phase of Confined Water Induced by a Terahertz Electromagnetic Wave. J. Phys. Chem. Lett. 2020. V. 2. № 11(1). P. 256–262. DOI: 10.1021/acs.jpclett.9b03228. Epub 2019 Dec 19. PMID: 31855440
- Zhao Yan, Wang Lei, Li Yangmei, Zhu, Zhi. Terahertz Waves Enhance the Permeability of Sodium Channels. Symmetry. 2023. V. 15. P. 427. DOI: 10.3390/sym15020427
- Hu Erling, Zhang Qi, Shang Sen, Jiang Yinan, Lu Xiaoyun. Continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules. iScience. 2022. V. 25. P. 3966. DOI: 10.1016/j.isci.2022.103966
- Lin Yanyun, Wu Xingjuan, Wang Kaicheng, Shang Sen, Gong Yubin, Zhao Hongwei, Wu Dai, Zhang Peng, Lu Xiaoyun. Spectral Characteristics and Functional Responses of Phospholipid Bilayers in the Terahertz Band. International Journal of Molecular Sciences. 2023. V. 24. P. 7111. DOI: 10.3390/ijms24087111
- Bannikova S., Khlebodarova T., Vasilieva, A., Mescheryakova I., Bryanskaya A., Shedko E., Popik V., Goryachkovskaya T., Peltek, S. Specific Features of the Proteomic Response of Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation. International Journal of Molecular Sciences. 2022. V. 23. P. 15216. DOI: 10.3390/ ijms232315216
- Sugiyama Jun-ichi, Tokunaga Yuji, Hishida Mafumi, Tanaka Masahito, Takeuchi Koh, Satoh Daisuke, Imashimizu Masahiko. Nonthermal acceleration of protein hydration by sub-terahertz irradiation. Nature Communications. 2023. V. 14. P. 38462. DOI: 10.1038/s41467-023-38462-0
- Schroer, M.A., Schewa, S., Gruzinov, A.Y. et al. Probing the existence of non-thermal Terahertz radiation induced changes of the protein solution structure. Sci. Rep. 2021. V. 11. P. 22311.
- Sitnikov D., Revkova, V., Ilina I., Gurova S., Komarov P., Struleva E., Konoplyannikov M., Kalsin V., Baklaushev V. Studying the genotoxic effects of high intensity terahertz radiation on fibroblasts and CNS tumor cells. Journal of Biophotonics. 2022. V. 16. P. 00212. DOI:10.1002/jbio.202200212
- Cheon Hwayeong, Hur Junho, Hwang Woochang, Yang Hee-Jin, Son Joo-Hiuk. Epigenetic modification of gene expression in cancer cells by terahertz demethylation. Sci. Rep. 2023. V. 13. P. 31828. DOI: 10.1038/s41598-023-31828-w
- Wang Lei, Cheng Yuanyuan, Wang Wenxia, Zhao Jinwu, Wang Yinsong, Zhang Xumei, Wang Meng, Shan Tianhe, He Mingxia. Effects of Terahertz Radiation on the Aggregation of Alzheimer’s Aβ42 Peptide. International Journal of Molecular Sciences. 2023. V. 24. P. 5039. DOI: 10.3390/ijms24055039
- Kovalevska L., Golenkov O., Kulahina Ye., Callender T., Sizov F., Kashuba E. A Comparative Study on the Viability of Normal and Cancerous Cells upon Irradiation with a Steady Beam of THz Rays. Life. 2022. V. 12. P. 376. DOI: 10.3390/life12030376
- Shaoqing Ma, Zhiwei Li, Shixiang Gong, Chengbiao Lu, Xiaoli Li, Yingwei Li. The laws and effects of terahertz wave interactions with neurons. Frontiers in Bioengineering and Biotechnology. 2023. V.11. P. 684. DOI: 10.3389/fbioe.2023. 1147684
- Lee D., Cheon H., Jeong S.Y., Son J.H. Transformation of terahertz vibrational modes of cytosine under hydration. Sci. Rep. 2020. Jun 24. V. 10(1). P. 10271. DOI: 10.1038/s41598-020-67179-z
- Shaoqing Ma, Zhiwei Li, Shixiang Gong, Chengbiao Lu, Xiaoli Li, Yingwei Li. (). High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission. Brain Sciences. 2023. V.13. P. 686. DOI: 10.3390/brainsci 13040686