350 rub
Journal Biomedical Radioelectronics №5 for 2023 г.
Article in number:
Approaches to the design of molecular platforms for use in the field to detect infectious agents
Type of article: overview article
DOI: https://doi.org/10.18127/j15604136-202305-03
UDC: 602: 616-71
Authors:

K.T. Momynaliev1, I.A. Appolonova2, I.V. Ivanov3

1,3 Federal State Budget Institution «Russian Scientific and Research Institute for Medical Engineering»
of Federal Service for Supervision in the sphere of public health (Moscow, Russia)

2 Moscow Bauman State Technical University (Moscow, Russia)

1 kmomynaliev@vniiimt, 2 apollonova-i@bmstu.ru, 3 ivanov@vniiimt.ru

Abstract:

The ability to rapidly detect and distinguish between multiple infectious organisms in humans and the environment is critical to controlling the spread of infections. In addition, at present, it is important to identify infectious agents of bioterrorism in the field, that is, when work to identify infectious agents is associated with unsettled work and life, and these works are carried out outside settlements.

The aim of our review is formulation of requirements for molecular systems for use in the field to detect infectious agents and review existing solutions for rapid pathogen diagnosis in the field.

The main automatic systems for molecular diagnostics of pathogens, which satisfy the conditions of automation and multiplexity and which are registered as medical devices, are considered. Of the molecular platforms we have considered, the approach implemented in the FilmArray system allows multiplex testing of pathogens, but is easy to use, requires minimal time to set up the analysis, and is portable. Essentially, FilmArray is an implementation of the Lab on a Chip, or μTAS (Total Analysis Micro System).

It was revealed that microfluidic PCR should become one of the main directions of PCR technology for field research. Taking advantage of microfluidics, fast PCR can be performed in a portable device with great convenience. Considering compatibility with the most commonly used nucleic acid extraction methods and a simple heating strategy, microfluidic platforms can be considered as one of the competitive rapid PCR platforms in field testing due to its ultra-high thermal cycling efficiency with a sufficiently large reactor and automatic isolation of NAs from biosamples.

Pages: 17-32
For citation

Momynaliev K.T., Appolonova I.A., Ivanov I.V. Approaches to the design of molecular platforms for use in the field to detect infectious agents. Biomedicine Radioengineering. 2023. V. 26. № 5. Р. 17-32. DOI: https://doi.org/10.18127/j15604136-202305-03 (In Russian).

References
  1. Zhang Z.W., Zhou Y.M., Zhang Y., Guo Y., Tao S.C. et al. Sensitive detection of SARS coronavirus RNA by a novel asymmetric multiplex nested RT-PCR amplification coupled with oligonucleotide microarray hybridization. Methods Mol. Med. 2005. V. 114. P. 59–78.
  2. Petric M., Comanor L., Petti C.A. Role of the laboratory in diagnosis of influenza during seasonal epidemics and potential pandemics.
    J. Infect. Dis. 2006. V. 194 (Suppl. 2). P. 98–110.
  3. Fox J.D. Respiratory virus surveillance and outbreak investigation. J. Clin. Virol. 2007. V. 40 (Suppl. 1). P. 24–30.
  4. Lessa F.C., Gould P.L., Pascoe N., Erdman D.D., Lu X. et al. Health care transmission of a newly emergent adenovirus serotype in health care personnel at a military hospital in Texas, 2007. J. Infect. Dis. 2009. V. 200. P. 1759–1765.
  5. Hatchette T.F., Bastien N., Berry J., Booth T.F., Chernesky M. et al. The limitations of point of care testing for pandemic influenza: what clinicians and public health professionals need to know. Can. J. Public Health. 2009. V. 100. P. 204–207.
  6. McCabe K.M., Khan G., Zhang Y.H., Mason E.O., McCabe E.R. Amplification of bacterial DNA using highly conserved sequences: automated analysis and potential for molecular triage of sepsis. Pediatrics. 1995. V. 95. P. 165–169.
  7. Forbes B.A. Introducing a molecular test into the clinical microbiology laboratory: development, evaluation, and validation. Arch. Pathol. Lab. Med. 2003. V. 127. P. 1106–1111.
  8. SanPiN 3.3686-21 «Sanitarno-epidemiologicheskie trebovaniya po profilaktike infekstionnykh bolezney». (in Russian).
  9. Chia J.H., Chu C., Su L.H., Chiu C.H., Kuo A.J. et al. Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M beta-lactamases of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae in Taiwan. J. Clin. Microbiol. 2005. V. 43. P. 4486–4491.
  10. Colom K., Perez J., Alonso R., Fernandez-Aranguiz A., Larino E. et al. Simple and reliable multiplex PCR assay for detection of blaTEM, bla(SHV) and blaOXA-1 genes in Enterobacteriaceae. FEMS Microbiol. Lett. 2003. V. 223. P. 147–151.
  11. Ginevra C., Barranger C., Ros A., Mory O., Stephan J.L. et al. Development and evaluation of Chlamylege, a new commercial test allowing simultaneous detection and identification of Legionella, Chlamydophila pneumoniae, and Mycoplasma pneumoniae in clinical respiratory specimens by multiplex PCR. J. Clin. Microbiol. 2005. V. 43. P. 3247–3254.
  12. Perez-Roth E., Claverie-Martin F., Villar J., Mendez-Alvarez S. Multiplex PCR for simultaneous identification of Staphylococcus aureus and detection of methicillin and mupirocin resistance. J. Clin. Microbiol. 2001. V. 39. P. 4037–4041.
  13. Strommenger B., Kettlitz C., Werner G., Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 2003. V. 41. P. 4089–4094.
  14. Cockerill F.R. Application of rapid-cycle real-time polymerase chain reaction for diagnostic testing in the clinical microbiology laboratory. Arch. Pathol. Lab. Med. 2003. V. 127. P. 1112–1120.
  15. Yang S., Rothman R.E. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 2004. V. 4. P. 337–348.
  16. Nolte F.S., Marshall D.J., Rasberry C., Schievelbein S., Banks G.G. et al. MultiCode-PLx system for multiplexed detection of seventeen respiratory viruses. J. Clin. Microbiol. 2007. V. 45. P. 2779–2786.
  17. Lassauniere R., Kresfelder T., Venter M. A novel multiplex real-time RT-PCR assay with FRET hybridization probes for the detection and quantitation of 13 respiratory viruses. J. Virol. Methods. 2010. V. 165 (2). P. 254–260.
  18. Li H., McCormac M.A., Estes R.W., Sefers S.E., Dare R.K. et al. Simultaneous detection and high-throughput identification of a panel of RNA viruses causing respiratory tract infections. J. Clin. Microbiol. 2007. V. 45. P. 2105–2109.
  19. Patent US20170122851A1. Sample preparation for difficult sample types. Biofire Diagnostics LLC.
  20. Poritz M.A., Blaschke A.J., Byington C.L., Meyers L., Nilsson K., Jones D.E. et al. FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection. PLoS ONE. 2011. V. 6(10). P. e26047. https://doi.org/10.1371/journal.pone.0026047
  21. Huang E., Wang Y., Yang N., Shu B., Zhang G., Liu D. A fully automated microfluidic PCR-array system for rapid detection of multiple respiratory tract infection pathogens. Anal. Bioanal. Chem. 2021. V. 413(7). P. 1787–1798. doi:10.1007/s00216-021-03171-4
  22. Patent US US9498778B2. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system. GENMARK DIAGNOSTICS, INC.
  23. GenMarkDx ePlex Specifications (2018). www.genmarkdx.com/wp-content/uploads/2015/07/GNMK IMC 1044 E ePlex Specifications.
  24. Pierce V.M., Hodinka R.L. Comparison of the GenMark Diagnostics eSensor respiratory viral panel to real-time PCR for detection of respiratory viruses in children. J. Clin. Microbiol. 2012. V. 50(11). P. 3458–3465.
  25. Babady N.E., England M.R., Jurcic Smith K.L. et al. Multicenter evaluation of the ePlex respiratory pathogen panel for the detection of viral and bacterial respiratory tract pathogens in nasopharyngeal swabs. J. Clin. Microbiol. 2018. V. 56(2). P. e01658-17.
  26. Lowery T.J. Nanomaterials-based magnetic relaxation switch biosensors. In: CSSR K, editor. Nanomaterials for the life sciences, Magnetic nanomaterials, vol. 4. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. 2009. P. 3–53.
  27. Skewis L.R., Demas V., Lowery T.J. Nuclear magnetic resonance nanotechnology: application in clinical diagnostics and monitoring. Encycl. Anal. Chem. 2013. P. 1–26.
  28. Luo Z-X., Fox L., Cummings M., Lowery T.J., Daviso E. New frontiers in in vitro medical diagnostics by low field T 2 magnetic resonance relaxometry. Trends Anal. Chem. 2016. V. 83. P. 94–102.
  29. Josephson L., Perez J.M., Weissleder R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew Chem. 2001.
    V. 113. P. 3304–3306.
  30. Perez J.M., Josephson L., O'Loughlin T., Högemann D., Weissleder R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 2002. V. 20. P. 816–820.
  31. Perez J.M., Simeone F.J., Saeki Y., Josephson L., Weissleder R. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. JACS. 2003. V. 125. P. 10192–10193.
  32. Perez J.M., Josephson L., Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chembiochem. 2004. V. 5. P. 261–264.
  33. Neely L.A., Audeh M., Phung N.A. et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci. Transl. Med. 2013. V. 5. P. 182ra54.
  34. Mylonakis E., Clancy C.J., Ostrosky-Zeichner L. et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin. Infect. Dis. 2015. V. 60. P. 892–899.
  35. Pfaller M.A., Wolk D.M., Lowery T.J. T2MR and T2Candida: novel technology for the rapid diagnosis of candidemia and invasive candidiasis. Future Microbiol. 2015. V. 11. P. 103–117.
  36. Na H.B., Song I.C., Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009. V. 21. P. 2133–2148.
  37. Yager P., Edwards T., Fu E., Helton K., Nelson K. et al. Microfluidic diagnostic technologies for global public health. Nature. 2006.
    V. 442. P. 412–418.
  38. Whitesides G.M. The origins and the future of microfluidics. Nature. 2006. V. 442. P. 368–373.
  39. Charles P.G. Early diagnosis of lower respiratory tract infections (point-of-care tests). Curr. Opin. Pulm. Med. 2008. V. 14. P. 176–182.
  40. Henrickson K.J. Advances in the laboratory diagnosis of viral respiratory disease. Pediatr. Infect. Dis. J. 2004. V. 23. P. S6–10.
  41. Weitzel T., Schnabel E., Dieckmann S., Borner U., Schweiger B. Evaluation of a new point-of-care test for influenza A and B virus in travellers with influenza-like symptoms. Clin. Microbiol. Infect. 2007. V. 13. P. 665–669.
  42. Popova V.M., Matveyev I.N., Grin S.A., Bogomolova O.A., Markova E.V. Tsirkovirusnaya infektsiya sviney. kultivirova-niye TsVS-1 i TsVS-2. diagnostika. mery borby. Tekhnologii zhivykh sistem. 2021. T. 18. № 3. S. 67–77. (in Russian).
  43. Shirshova A.N., Smetanina M.A., Aushev V.N., Filipenko M.L., Kushlinskiy N.E. MikroRNK – novyye perspektivnyye bio-markery opukholey i misheni khimioterapii. Chast 3. Terapevticheskoye primeneniye mikroRNK. Metody kolichestvennogo opredeleniya. Voprosy biologicheskoy. meditsinskoy i farmatsevticheskoy khimii. 2015. № 4. S. 31–39. (in Russian).
Date of receipt: 24.08.2023
Approved after review: 21.09.2023
Accepted for publication: 02.10.2023