350 rub
Journal Biomedical Radioelectronics №4 for 2022 г.
Article in number:
The use of tomographic principles in active radiolocation in the implementation of technical vision
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604136-202204-04
UDC: 621.396.96; 519.21
Authors:

T.A. Zhilnikov1, V.I. Zhulev2, A.A. Zhilnikov3

1,3 Academy of the Federal Penitentiary Service of Russia (Ryazan, Russia)

2 Ryazan State Radio Engineering University named after V.F. Utkin (Ryazan, Russia)

Abstract:

Currently, technical vision methods are developing dynamically, and their areas of application are very extensive and applicable to all modern technical systems: medical diagnostics, robotics, biotechnology, aerospace, information recognition, and many other areas. Determining the spatial location is one of the main tasks of the main tasks of technical vision, which today are solved by various methods of traditional active radiolocation.

Several classic variants of the paths along which an electromagnetic wave reflected from an object and from another surface returns to the receiver exist in traditional active radiolocation with a passive response. An attempt to transfer false signals of classical active radiolocation with a passive response into the category of useful ones is made in the work. The use of tomographic principles to organize of the measurement procedure and the subsequent reconstruction (restoration) of the radiolocation scene were called upon to help in this. Since tomography belongs to the class of problems that interpret the results of indirect measurements given by Fredholm integral equations of the first type, defining the indicated class of problems as incorrectly posed, then, accordingly, the solution of the integral equation is associated with the resolution of questions about the existence of the solution, its uniqueness and stability. Therefore, the decision to move away from the deterministic description of the subject area, and turn to stochastic analysis, was made, focusing on the fact that empirical research is not active and should be carried out in conditions of low angle, a limited amount and not always the full amount of data required for the reconstruction of the radiolocation scene.

Thus, the task is to develop a method for reconstructing the radiolocation scene from empirical data of projection dependencies, which makes it possible to determine the radius-vector with the coordinates of the slant range and azimuth of the object position from the set of radiolocation scene objects . The condition of the problem allows for the possible absence of a reflected echo signal, which is characteristic of traditional active monostatic radiolocation with a passive response, but which does not exclude the return of a radio echo as a result of multiple reflections of the scanning signal inside the radiolocation scene, including from other objects and along other azimuthal angles β.

The purpose of the work is to develop an original method for detecting hidden objects located both behind dimensional obstacles out of direct radio visibility, and due to design features, that do not reflect, but scatter radio waves, as part of the implementation of technical vision.

Pages: 29-38
For citation

Zhilnikov T.A., Zhulev V.I., Zhilnikov A.A. The use of tomographic principles in active radiolocation in the implementation of technical vision. Biomedicine Radioengineering. 2022. V. 25. № 4. Р. 29-38. DOI: https://doi.org/10.18127/j15604136-202204-04 (In Russian)

References
  1. Moshkin V.I., Petrov A.A., Titov V.S., Yakushenkov Yu.G. Tekhnicheskoye zreniye robotov. M.: Mashinostroyeniye. 1990. 272 s. (in Russian).
  2. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Ispolzovaniye tekhnicheskogo zreniya pri reshenii radiolokatsionnykh zadach. Biomeditsinskaya radioelektronika. 2020. T. 23. № 3. S. 26-36. DOI: 10.18127/j15604136-202003-04 (in Russian).
  3. Pyu A. Tekhnicheskoye zreniye robotov. M.: Mashinostroyeniye.1987. 320 s. (in Russian).
  4. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Formirovaniye iskhodnykh proyektsionnykh dannykh v tomografii otrazheniy pri realizatsii tekhnicheskogo zreniya. Biomeditsinskaya radioelektronika. 2021. T. 24. № 4. S. 58-67. DOI: 10.18127/j15604136-202104-08 (in Russian).
  5. Bakut P.A., Bolshakov I.A., Tartakovskiy G.P. Voprosy statisticheskoy teorii radiolokatsii. T. 1. M: Sov. Radio. 1963. 421 s. (in Russian).
  6. Sokolov A.V. Voprosy perspektivnoy radiolokatsii: Kollektivnaya monografiya. M.: Radiotekhnika. 2003. 512 s. (in Russian).
  7. Tikhonov A.N., Goncharskiy A.V., Stepanov V.V., Yagola A.G. Chislennyye metody resheniya nekorrektnykh zadach. M.: Nauka. 1990. 232 s. (in Russian).
  8. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Model informatsionnogo kanala dlya sluchaya mnogokratnykh otrazheniy pri rekonstruktsii slozhnykh radiolokatsionnykh stsen. Aviakosmicheskoye priborostroyeniye. 2020. № 2. S. 3-12. DOI: 10.25791/aviakosmos. 02.2020.1140 (in Russian).
  9. Berdyshev V.P. Radiolokatsionnyye sistemy: Uchebnik. Krasnoyarsk: Sib. feder. un-t. 2011. 400 s. (in Russian).
  10. Zhilnikov T.A., Zhulev V.I., Zhilnikov A.A. Tomograficheskaya radiolokatsionnaya registratsiya polozheniya obyektov. Pribory i sistemy. Upravleniye. kontrol. diagnostika. 2022. № 1. S. 1-7. DOI: 10.25791/pribor.1.2022.1313 (in Russian).
  11. Tikhonov A.N., Arsenin V.Ya., Timonov A.A. Matematicheskiye zadachi kompyuternoy tomografii. M.: Nauka. 1987. 160 s. (in Russian).
  12. Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissen-schaften. Bande 29. Leipzig. 1917. S. 262-277.
  13. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Razvitiye obyemnoy tomografii dlya opredeleniya vektornykh fizicheskikh ve-lichin. Inzhenernaya fizika. 2019. № 9. S. 10-15. DOI: 10.25791/infizik.09.2019.834 (in Russian).
  14. Zhilnikov A.A., Zhilnikov T.A., Zhulev V.I. Finitnaya tomograficheskaya rekonstruktsiya. Biomeditsinskaya radioelek-tronika. 2019.
    T. 22. № 4. S. 31-37. DOI: 10.18127/j15604136-201904-05 (in Russian).
  15. Khermen G. Vosstanovleniye izobrazheniy po proyektsiyam: Osnovy rekonstruktivnoy tomografii. M.: Mir. 1983. 352 s. (in Russian).
  16. Troitskiy I.N. Kompyuternaya tomografiya. M.: Znaniye. 1988. 64 s. (in Russian).
Date of receipt: 24.05.2022
Approved after review: 11.07.2022
Accepted for publication: 22.07.2022