350 rub
Journal Biomedical Radioelectronics №2 for 2021 г.
Article in number:
Theta rhythm, attention and transcranial stimulation method
Type of article: overview article
DOI: https://doi.org/10.18127/j15604136-202102-01
UDC: 612.821
Authors:

N.A. Karatygin, I.I. Korobeinikova

P.K. Anokhin Research Institute of Normal Physiology (Moscow, Russia)

Abstract:

Noninvasive methods of transcranial stimulation in clinical and research activity have become widely applied for the last few years. Due to the high spatial and temporal resolution, these methods allow to explore oscillatory processes that underlie important cognitive functions on a new level. In particular, researchers got an opportunity to influence rhythmic processes, which provide function of attention by these methods. By the way, stimulation of different brain zones with theta-rhythm frequency appears to be interesting, as far as oscillations of attention on this frequency reveal itself both in external activity of subject and in oscillatory activity of neurons and neural ensembles.

Aim – analysis and summarize of domestic and foreign researches with usage of transcranial stimulation method to identify role of theta-rhythm in attention processes.

Analysis of modern data concerning significance of theta-rhythm in organization of attention processes was performed analyzed. Different modes of transcranial stimulation methods, that allow to discover fundamental role of theta-rhythm in oscillatory activity of neural assembles, which are the base for attention mechanisms were considered. The review noted that the method of transcranial magnetic stimulation (TMS), which is based on the principle of electromagnetic induction with potential excellent temporal and sufficiently decent spatial resolution, is extensively widely used. Usually, TMS is performed with usage single-pulse, paired-pulse, or repetitive rhythmic stimulation. In current review special attention is salaried to the theta burst stimulation protocol. It was suggested that current protocol hypothesizes to influence brain plasticity and simulates the effect of theta-gamma coupling, which is to change the amplitude of the potentials at the frequency of the gamma rhythm depending on the theta wave phase. During the applying of the TMS different variants, several research methodological approaches were applied. Thus, usage of TMS may disrupt functioning in certain cortex areas , also it is possible to increase the oscillatory activity of a particular region at a particular frequency and  to enhance or decrease the synchronization of remote cortical areas in a certain frequency range. These approaches  may  be used directly during the execution of the test task by the subjects or in the period  prior the test performing.

Many researches show that transcranial stimulation of some zones of cortex contributes to the achievement of better results of examinee in tests on memory and attention. This effect is most often observed while usage of stimulation with theta-rhythm frequency. Improvement of memory and attention functions has high practical meaning for wide range of activity. Understanding of regularities and mechanisms of stimulation with theta-rhythm frequency would allow to create systems and protocols of stimulation, which would effectively improve these functions for the long period.

Pages: 5-12
For citation

Karatygin N.A., Korobeinikova I.I. Theta rhythm, attention and transcranial stimulation method. Biomedicine Radioengineering. 2021. V. 24. № 2. Р. 5−12. DOI: https://doi.org/10.18127/j15604136-202102-01 (in Russian).

References
  1. Machinskaya R.I. Neyrofiziologicheskiye mekhanizmy proizvolnogo vnimaniya (analiticheskiy obzor). Zhurnal vysshey nervnoy deyatelnosti im. I.P. Pavlova. 2003. T. 53(2). C. 133–150 (in Russian).
  2. Falikman M.V. Obyektnoye i prostranstvennoye vnimaniye v pertseptivnykh zadachakh. Teoreticheskiye i prikladnyye problemy psikhologii myshleniya. Sb. statey. M.: RGGU. 2012. S. 112–118 (in Russian).
  3. Petersen S.E., Posner M.I. The attention system of the human brain: 20 years after. Annual review of neuroscience. 2012. V. 35. P. 73–89.
  4. Voronin N.A. Sovremennyye predstavleniya o sistemakh vnimaniya. Sovremennaya zarubezhnaya psikhologiya. 2016. T. 5(4).  S. 67–76 (in Russian).
  5. Falikman M.V. Struktura i dinamika zritelnogo vnimaniya pri reshenii pertseptivnykh zadach: konstruktivno-deyatelnostnyy podkhod: Diss. na soiskaniye uch. st. dokt. psikholog. nauk. M.: Izd-vo MGU. 2015 (in Russian).
  6. Helfrich R.F., Fiebelkorn I.C., Szczepanski S.M., Lin J.J., Parvizi J., Knight R.T., Kastner S. Neural mechanisms of sustained attention are rhythmic. Neuron. 2018. V. 99. № 4. P. 854–865.
  7. Fiebelkorn I.C., Pinsk M.A., Kastner S. A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron. 2018. V. 99. № 4. P. 842–853.
  8. Güntekin B., Başar E. A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia. 2014. V. 58. P. 33–51.
  9. Colgin L.L. Mechanisms and functions of theta rhythms. Annual review of neuroscience. 2013. V. 36. P. 295–312.
  10. Korotkova T., Ponomarenko A., Monaghan C.K., Poulter S.L., Cacucci F., Wills T., Hasselmo M.E., Lever C. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience & Biobehavioral Reviews. 2018. V. 85. P. 65–80.
  11. Töllner T., Wang Y., Makeig S., Müller H.J., Jung T.P., Gramann K. Two independent frontal midline theta oscillations during conflict detection and adaptation in a Simon-type manual reaching task. Journal of Neuroscience. 2017. V. 37. № 9. P. 2504–2515.
  12. Romero M.C., Davare M., Armendariz M., Janssen P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nature communications. 2019. V. 10 №1. P. 1–11. 
  13. Li B., Virtanen J.P., Oeltermann A., Schwarz C., Giese M.A., Ziemann U., Benali A. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation. Elife. 2017. V. 6. P. e30552.
  14. Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000. V. 406. № 6792. P. 147–150.
  15. Belova A.N., Baldova S.N. Transkranialnaya magnitnaya stimulyatsiya: klinicheskoye primeneniye i nauchnyye perspektivy. Uspekhi sovremennogo estestvoznaniya. 2015. T. 9(1). S. 34–42 (in Russian).
  16. Valero-Cabré A., Amengual J.L., Stengel C., Pascual-Leone A., Coubard O.A. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neuroscience & Biobehavioral Reviews. 2017.  V. 83. P. 381–404.
  17. Huang Y.Z., Edwards M.J., Rounis E., Bhatia K.P., Rothwell J.C. Theta burst stimulation of the human motor cortex. Neuron. 2005.  V. 45. P. 201–206.
  18. Thomson A., Tielens S., Schuhmann T., De Graaf T., Kenis G., Rutten B., Sack A. The effect of transcranial magnetic stimulation on living human neurons. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2019. V. 12. №2. P. 524.
  19. Demeter E. Enhancing cognition with theta burst stimulation. Current Behavioral Neuroscience Reports. 2016. V. 3. № 2. P. 87–94.
  20. Thut G., Veniero D., Romei V., Miniussi C., Schyns P., Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Current biology. 2011. V. 21. № 14. P. 1176–1185.
  21. Dugué L., VanRullen R. Transcranial magnetic stimulation reveals intrinsic perceptual and attentional rhythms. Frontiers in neuroscience. 2017. V. 11. №154. P. 1–7.
  22. Thut G., Nietzel A., Pascual-Leone A. Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention. Cerebral Cortex. 2004. V. 15. № 5. P. 628–638.
  23. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007. V. 55. № 2. P. 187–199.
  24. Okazaki Y.O., Nakagawa Y., Mizuno Y., Hanakawa T., Kitajo K. Frequency-and area-specific entrainment of intrinsic cortical oscillations by repetitive transcranial magnetic stimulation. bioRxiv. 2018. P. 455857.
  25. Platz T., Schuettauf J., Aschenbach J., Mengdehl C., Lotze M. Effects of inhibitory theta burst TMS to different brain sites involved in visuospatial attention – a combined neuronavigated cTBS and behavioural study. Restorative neurology and neuroscience. 2016. V. 34. № 2. P. 271–285.
  26. Anderkova L., Pizem D., Klobusiakova P., Gajdos M., Koritakova E., Rektorova I. Theta burst stimulation enhances connectivity of the dorsal attention network in young healthy subjects: an exploratory study. Neural plasticity. 2018. №3106918. P. 1–6
  27. Dugué L., Beck A.A., Marque P., VanRullen R. Contribution of FEF to attentional periodicity during visual search: a TMS study. eNeuro. 2019. V. 6. № 3. (e0357-18). P. 1–10.
  28. Dugué L., Marque P., VanRullen R. Transcranial magnetic stimulation reveals attentional feedback to area V1 during serial visual search. PLoS One. 2011. V. 6. № 5. (e19712). P. 1–8.
  29. Dugué L., Roberts M., Carrasco M. Attention reorients periodically. Current Biology. 2016. V. 26. № 12. P. 1595–1601.
  30. Nazarova M.A., Blagoveshchenskiy E.D., Nikulin V.V., Mitina M.V. Transkranialnaya magnitnaya stimulyatsiya s elektroentsefalografiyey: metodologiya, eksperimentalnyye i klinicheskiye vozmozhnosti. Nervno-myshechnyye bolezni. 2017. T. 7(4). S. 20–32 (in Russian).
  31. Dugué L., Marque P., VanRullen R. Theta oscillations modulate attentional search performance periodically. Journal of cognitive neuroscience. 2015. V. 27. № 5. P. 945–958.
  32. Moreno-Duarte I., Gebodh N., Schestatsky P., Guleyupoglu B., Reato D., Bikson M., Fregni F. Transcranial electrical stimulation: transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial pulsed current stimulation (tPCS), and transcranial random noise stimulation (tRNS). In The stimulated brain. Academic Press. 2014. P. 35–59.
  33. Tavakoli A.V., Yun K. Transcranial alternating current stimulation (tACS) mechanisms and protocols. Frontiers in cellular neuroscience. 2017. V. 11. №. 214. P. 1–10.
  34. Vosskuhl J., Strüber D., Herrmann C.S. Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Frontiers in human neuroscience. 2018. V. 12. № 211. P. 1–19.
  35. Rosero P.M., Cavalli J., Nees F., Flor H., Andoh J. Disruption of the Prefrontal Cortex Improves Implicit Contextual Memory-Guided Attention: Combined Behavioral and Electrophysiological Evidence. Cerebral cortex. 2020. V. 30. № 1. P. 20–30.
  36. van Schouwenburg M.R., Sligte I.G., Giffin M.R., Gunther F., Koster D., Spronkers F.S., Vos A., Slagter H.A. Effects of mid-frontal brain stimulation on sustained attention. Journal of Cognitive Enhancement. 2020. P. 1–11.
  37. Chanes L., Quentin R., Tallon-Baudry C., Valero-Cabré A. Causal frequency-specific contributions of frontal spatiotemporal patterns induced by non-invasive neurostimulation to human visual performance. Journal of Neuroscience. 2013. V. 33. № 11. P. 5000–5005.
  38. Romei V., Thut G., Mok R.M., Schyns P.G., Driver J. Causal implication by rhythmic transcranial magnetic stimulation of alpha frequency in feature-based local vs. global attention. European Journal of Neuroscience. 2012. V. 35. № 6. P. 968–974.
Date of receipt: 24.11.2020
Approved after review: 25.12.2020
Accepted for publication: 26.02.2021