350 rub
Journal Biomedical Radioelectronics №2 for 2020 г.
Article in number:
Investigation of the influence of thermal and mechanical effects on the duration of technological processes of thawing of cryopreserved thermolabile blood components
DOI: 10.18127/j15604136-202002-06
UDC: 615.47
Authors:

V.N. Lemondzhava – Head of Design Department, «HYPERION» Ltd. (Moscow)

E-mail: lemonjava.vahtang@gmail.com

V.Yu. Leushin – Ph.D. (Eng.), Deputy CEO, «HYPERION» Ltd. (Moscow)

E-mail: ra3bu@yandex.ru

A.V. Chechetkin – D.Sc. (Med.), Professor, Director, Federal State Budgetary Institution «Russian Research  Institute of Hematology and Transfusiology of the Federal Medical and Biological Agency»

E-mail: aschech@rambler.ru

A.D. Kasyanov – Ph.D. (Med.) Head of the Blood Transfusion Quality Control Group, Federal State Budgetary  Institution «Russian Research Institute of Hematology and Transfusiology 

of the Federal Medical and Biological Agency»

E-mail: kaslab52@mail.ru

E.A. Kiseleva – Head of the Republican Center for Gravity Blood Surgery, Federal State Budgetary Institution «Russian Research Institute of Hematology and Transfusiology of the Federal Medical and Biological Agency»

E-mail: kiseleva.rcg@gmail.com 

V.V. Nazarov – Ph.D. (Eng.), Associate Professor, Moscow State Technical University n.a. N.E. Bauman

E-mail: nazarov@bmstu.ru

G.A. Gudkov – Laboratory Assistant, Center for Youth Innovation Creativity «KUB», «HYPERION» Ltd. (Moscow)

E-mail: info@cube-lab.ru

Abstract:

Formulation of the problem. Hemostatic parameters of thermolabile blood components inevitably decrease in preparation for transfusion. Currently, an urgent task is to improve the quality of thawed cryopreserved thermolabile blood components and, in particular, to determine the requirements for defrosting regimes, which will significantly reduce the defrosting time and thereby increase the safety of hemostatic parameters of blood components.

Aim of the work – to study the influence of the parameters of thermal and mechanical effects on the duration of technological processes of thawing of cryopreserved thermolabile blood components.

Results. The objects of influence in the experiments were polymer containers with the equivalent of thermolabile blood components. The experimental results were compared with the data of the defrosting process, which is used in modern practice of preparing blood components for transfusion. The comparison results allow us to evaluate the effectiveness of the effects that are currently not used in modern domestic and foreign devices. The use of an increased frequency of mechanical impacts equal to 180 cycles per minute, has reduced the time of the defrosting process by 21,2%. Defrosting at a coolant temperature equal to plus 45 °С led to a reduction in the process time by 55,4%. The combination of an increased frequency of mechanical impacts equal to 180 cycles per minute and an increased defrosting temperature equal to plus 45 ° C allows you to achieve maximum efficiency from the considered exposure options and will reduce the process time by 67,7%. When these effects were implemented, no local overheating was recorded, namely, the temperature of the equivalent blood component in the polymer container did not exceed 37 °C, which indicates the safety of the process. The results of the study demonstrate the low efficiency of the use of forced circulation of the coolant in the process using a circulation pump in the case of mechanical effects on the polymer container. According to the results of the comparison, depending on the combination of influences used, the use of a circulation pump will reduce the duration of the process from 2,1% to 3,3%.

Practical significance. As a result of the work carried out, the requirements for thawing regimes of cryopreserved thermolabile blood components were determined, which ensure a safe reduction in the duration of the process. For a quantitative assessment of the increase in the safety of hemostatic parameters of thermolabile blood components when using parameters whose effectiveness is determined in the work, additional studies with samples of blood components are necessary.

Pages: 40-49
References
  1. Manual on the management, maintenance and use of blood cold chain equipment. Department of Essential Health Technologies World Health Organization 1211 Geneva 27, Switzerland. 2005. P.92.
  2. Chechetkin A.V., Danil'chenko V.V., Grigor'yan M.Sh., Vorobej L.G., Plockij R.A. Osnovnye pokazateli deyatel'nosti sluzhby krovi Rossijskoj Federacii v 2017 godu. Transfuziologiya. 2018. № 3. S. 4–14. (In Russian).
  3. Chechetkin A.V., Danil'chenko V.V., Grigor'yan M.Sh., Vorobej L.G., Plockij R.A., Makeev A.B. Deyatel'nost' sluzhby krovi Rossijskoj Federacii v 2016 godu. Transfuziologiya. 2017. № 3. S. 4–14 (In Russian).
  4. Chechetkin A.V., Danil'chenko V.V., Grigor'yan M.Sh., Vorobej L.G., Plockij R.A. Sluzhba krovi Rossijskoj Federacii v 2014 godu: itogi deyatel'nosti. Transfuziologiya. 2015. № 3. S. 4–13 (In Russian).
  5. Selivanov E.A., Chechetkin A.V., Danilova T.N., Grigor'yan M.Sh. Deyatel'nost' sluzhby krovi Rossii v 2010 godu. Transfuziologiya. 2011. № 4. S. 4–14 (In Russian).
  6. Selivanov E.A., Danilova T.N., Degtereva I.N., Grigor'yan M.Sh., Vorobej L.G. Harakte-ristika deyatel'nosti uchrezhdenij sluzhby krovi Rossii v 2007 godu. Transfuziologiya. 2008. № 3. S. 4–26 (In Russian).
  7. Selivanov E.A., Danilova T.N., Degtereva I.N., Vorobej L.G., Grigor'yan M.Sh. Sluzhba krovi Rossii v 2005 godu. Transfuziologiya. 2006. № 3. S. 4–26 (In Russian).
  8. Selivanov E.A., Danilova T.N., Degtereva I.N. i dr. Osnovnye pokazateli deyatel'nosti sluzhby krovi Rossii v 2002 godu. Transfuziologiya. 2003. № 4. S. 7–28 (In Russian).
  9. Oprishchenko S. A., Zaharov V. V., Rusanov V. M. Mezhdunarodnye reguliruyushchie dokumen-ty i standarty sluzhby krovi i proizvodstva preparatov plazmy. M.: ID «Medpraktika-M». 2008. 464 s. (In Russian).
  10. Vorob'eva N.A., Golubeva E.K., Turunduevskaya O.V., Soldatenko N.V. Vliyanie razmora-zhivaniya donorskoj plazmy metodom prostogo teploobmena na aktivnost' antitrombina III. Transfuziologiya. 2006. № 4. S. 42–49 (In Russian).
  11. Isaacs M., Scheuermaier K., Levy B., Scott L., Penny C., Jacobson B. In vitro effects of thaw-ing fresh-frozen plasma at various temperatures. Clinical and Applied Thrombosis/Hemostasis. 2004. № 10(2). P. 143–148.
  12. Tholpady A., Monson J., Klein K., Radovancevic R., Bracey A. Analysis of prolonged storage on coagulation Factor (F)V, FVII, and FVIII in thawed plasma: is it time to extend the expiration date beyond 5 days?. Transfusion. 2012. № 53(3). P. 645–650.
  13. Cookson P., Lawrie A., Green L., Dent E., Proffitt S., Bashir S., Thomas S., Cardigan R. Thrombin generation and coagulation factor content of thawed plasma and platelet concentrates. Vox Sanguinis. 2014. № 108(2). P. 160–168.
  14. Zarubin M.V., Saratova O.E., ZHiburt E.B. Stabil'nost' termolabil'nyh faktorov svertyvaniya v svezhezamorozhennoj plazme posle ee razmorazhivaniya. Gematologiya i transfu-ziologiya, 2015. № 60(3). S. 35–38 (In Russian).
  15. Backholer L., Huish S., Laura G., Platton S., Wiltshire M., Doughty H., Curnow E., Cardigan R. A paired comparison of thawed and liquid plasma. Transfusion. 2016. № 57(4). P. 881–889.
  16. Dumont L., Cancelas J., Maes L., Rugg N., Whitley P., Herschel L., Siegel A., Szczepiorkowski Z., Hess J., Zia M. The bioequivalence of frozen plasma prepared from whole blood held overnight at room temperature compared to fresh-frozen plasma prepared within eight hours of collection. Transfusion. 2014. № 55(3). P. 476–484.
  17. Linskens E., Devreese K. Pre-analytical stability of coagulation parameters in plasma stored at room temperature. International Journal of Laboratory Hematology. 2018. № 40(3). P. 292–303.
  18. Heger A., Pock K., Romisch J. Thawing of Pooled, Solvent/Detergent-Treated Plasma octa-plasLG: Validation Studies Using Different Thawing Devices. Transfus Med Hemother. April 2017. V. 51. № 2. P. 94–98.
  19. Selivanov E.A., Baryshev B.A., Kobilyanskaya V.A. Vliyanie metodov zamorazhivaniya i razmorazhivaniya plazmy krovi na aktivnost' prokoagulyantov i antitrombina III. Transfuzio-logiya. 2001. № 4. S. 61–66 (In Russian).
  20. Verba V.S., Gudkov A.G., Leushin V.Yu., Murafetov A.A., Popov V.V., Raevskij S.K. Ote-chestvennoe oborudovanie dlya sluzhby krovi. Gematologiya i transfuziologiya. 2008. T. 53. № 1. S. 43–44 (In Russian).
  21. Lemondzhava V.N., Leushin V.Yu., Halapsina T.M., Agasieva S.V., Gorlacheva E.N., Chizhi-kov S.V., Markin A.V. Avtomatizirovannye kompleksy dlya razmorazhivaniya kriokonserviro-vannyh komponentov krovi. Medicinskaya tekhnika. 2017. № 6. S. 7–9 (In Russian).
  22. Gudkov A.G., Leushin V.Yu., Lemondzhava V.N., Bobrihin A.F., Petrov V.I., ShChukin S.I. Oborudovanie dlya teplovoj obrabotki i hraneniya komponentov i preparatov krovi. Medi-cinskaya tekhnika. 2015. № 2. S. 40–43 (In Russian).
  23. Gudkov A.G., Leushin V.Yu., Lemondzhava V.N., Bobrihin A.F., Popov V.V. Kompleksnyj podhod pri sozdanii elektronnyh ustrojstv dlya teplovoj obrabotki i hraneniya komponentov i preparatov krovi. Biomedicinskaya radioelektronika. 2014. № 8. S. 54–60 (In Russian).
  24. Gudkov A., Leushin V., Lemondjava V., Bobrikhin A., Gorlacheva E. Development Results of the Intelligent Device for Storage of the Transfusion Environments Containing Platelets. Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016). V. 3: KMIS. November 9–11, 2016. Porto. Portugal. P. 108–115. 
  25. Gudkov A.G., Leushin V.Yu., Chechetkin A.V., Lazarenko M.I. Tekhnologii transfuziologii. M.: SAJNS-PRESS. 2012. 272 s. (In Russian).
  26. Gudkov A.G., Onufrievich A.D., Kayumova L.I., Popov V.V., Chechetkin A.V., Leushin V.Yu., Meshkov S.A., Selivanov E.A. Razmorazhivatel' kriokonservirovannyh produktov krovi «Plaz-moterm-4»: reshenie problemy obespecheniya tochnosti processa termoobrabotki. Biomedicin-skaya radioelektronika. 2007. № 6. S. 39–43 (In Russian).
  27. Vetrova N.A., Gudkov A.G., Shashurin V.D., Narajkin O.S., Agasieva S.V., Gorlacheva E.N., Lemondzhava V.N., Gukasov V.M. Tekhnologicheskaya optimizaciya ustrojstva dlya bezopasno-go hraneniya trombocitosoderzhashchih transfuzionnyh sred. Medicinskaya tekhnika. 2017. № 4. S. 18–21 (In Russian).
  28. Gudkov A.G. Radioapparatura v usloviyah rynka. Kompleksnaya tekhnologicheskaya optimi-zaciya. M.: SAJNS-PRESS. 2008. 336 s. (In Russian).
  29. Gudkov A.G., Bobrihin A.F., Zelenov M.S., Leushin V.Yu., Lemondzhava V.N., Marzhanov-skij I.N., Chernyshev A.V. Modelirovanie processov hraneniya trombocitosoderzhashchih trans-fuzionnyh sred v polimernyh kontejnerah. Medicinskaya tekhnika. 2016. № 3. S. 53–55 (In Russian).
  30. Gudkov A.G., Agasieva S.V., Bobrihin A.F., Gorlacheva E.N., Zelenov M.S., Lemondzhava V.N., Leushin V.Yu., Chernyshev A.V., Levchuk M.A., Chizhikov S.V. Modelirovanie processov hra-neniya kontejnerov s trombocitosoderzhashchimi sredami v inkubatorah trombocitov. Medi-cinskaya tekhnika. 2016. № 5. S. 45–47 (In Russian).
  31. Lemondzhava V.N. Vliyanie na skorost' tekhnologicheskogo processa razmorazhivaniya plazmy krovi prinuditel'nyh gidrodinamicheskih i mekhanicheskih vozdejstvij na bioob"ekt. Biomedicinskaya radioelektronika. 2018. № 11. S. 48–55 (In Russian).
Date of receipt: 11 марта 2020 г.