350 rub
Journal Biomedical Radioelectronics №7 for 2016 г.
Article in number:
Cination procedures program control optimization
Keywords:
epidemics models
incidence dynamics
vaccination
migration
optimal control
performance index
dynamic program-ming
Bellman principle
Authors:
V.V. Kotin - Dr.Sc. (Phys.-Math.), Associate Professor, Bauman Moscow State Technical University
E-mail: v.kotin@gmail.com
A.S. Sychugina - Bachelor, Bauman Moscow State Technical University
E-mail: sychuginaanna@yandex.ru
Abstract:
As the title implies the article describes the results of working out an effective strategy for one of the specific epidemiological models. It is specially noted that different methods have been used to achieve optimal results for controlling the spread of measles infection. The article demonstrates an optimal measles infection control strategy for the SEIR epidemiological model. Bellman's discrete principle of optimality was used to find the optimal control. Much attention is given to theoretical considerations concerning epidemiological models. It should be emphasized that the proposed methods are considered to give reliable information suitable for further analysis.
A state of uncontrolled and controlled mathematical models is shown and the results are examined and compared. The article gives valuable information on optimizing the SEIR epidemiological model basing on the data comparison. The data of a numerical simulation which illustrate theoretical results for the SEIR model are analyzed for a constant population size. Finally, the article gives a detailed analysis of numerical simulations of the resulting optimality system which show that it is more beneficial to vaccinate the population than to apply supportive treatment at the initial stage of the disease spreading. However, certain resources should be invested in vaccination until the disease prevalence starts coming to an end because after this point vaccination becomes more expensive than treatment application.
So, basing on the above-mentioned results of the research the author comes to the conclusion that vaccination and treatment should be used in proper periods. Thus, the article is sure to provide an optimal measles infection control strategy for the SEIR epidemiological model.
Pages: 25-30
References
- Hethcote H.W., Waltman P. Optimal vaccination schedules in deterministic epidemic model // Mathematical Biosciences. 1973. V. 18. R. 365-381.
- Behncke H. Optimal control of deterministic epidemics // Optimal control applications and methods. 2000. V. 21. R. 269-285.
- Stone L., Shulgin B., Agur Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model // Mathematical and computer modelling. V. 31. № 4. R. 207-215.
- Kolesin I.D., ZHitkova E.M. Optimizacija protivoehpidemicheskojj profilaktiki shkolnikov // Avtomatika i telemekhanika. 2008. Vyp. 7. S. 129-135.
- Bratus A.S., Novozhilov A.S., Platonov A.P. Dinamicheskie sistemy i modeli biologii. M.: Fizmatlit. 2010. 400 s.
- Grigorieva E., Khailov E., Korobeinikov A. Optimal control for an epidemic in populations of varying size // Dynamical Systems, Differential Equations and Applications. 2015. P. 549-561.
- Hassan L., Abdelhadi A., Mostafa R. Stability Analysis and Optimal Vaccination Strategies for an SIR Epidemic Model with a Nonlinear Incidence Rate // International Journal of Nonlinear Science. 2013. V. 16. № 4. R. 323-333.
- Onyango Nelson Owuor, Muller Johannes, Moindi Stephen Kibet. Optimal Vaccination Strategies in an SIR Epidemic Model with Time Scales // Applied Mathematics. 2013. № 4. P. 1-14.
- Okey Oseloka Onyejekwe, Esayas Zewdie Kebede. Epidemiological Modeling of Measles Infection with Optimal Control of Vaccination and Supportive Treatment // Journal Mathematics and Statistics. 2015. P. 264-274. DOI: 10.11648/j.acm.20150404.15 /proc.2015.0549.
- Ali Vahidian Kamyad, Reza Akbari, Ali Akbar Heydari, Aghileh Heydari. Mathematical Modeling of Transmission Dynamics and Optimal Control of Vaccination and Treatment for Hepatitis B Virus // Computational and Mathematical Methods in Medicine. 2014. Article ID 475451. P. 1-15.
- Nemaranzhe L. A mathematical modeling of optimal vaccination strategies in epidemiology[EHlektronnyjj resurs] // M.Sc. thesis, Department of Mathematics, University of Western Cape. 2010. URL: http://hdl.handle.net/11394/ 3762 (data obrashhenija: 22.03.2016).
- Greenhalgh D. Age-Structured Models and Optimal Control in Mathematical\\\\ Epidemiology: a Survey // Optimal Control of Age-Structured Populations in \\\\ Economy, Demography and the Environment. Routledge Explorations in Environmental \\\\ Economics. 2010. P. 174-206.
- Moneim I.A. Efficiency of different vaccination strategies for childhood diseases: A simulation study // Advances in Bioscience and Biotechnology. 2013. V. 16. № 4. P. 323-333.
- Iacoviello D., Liuzzi G. Fixed/free final time SIR epidemic models with multiple controls // Professional paper. 2008. V. 7. № 2. P. 81-92.
- Moiseev N.N. CHislennye metody v teorii optimalnykh sistem. M.: Nauka. 1971. 424 s.
- Aleksandrov A.G., Artemev V.M., Afanasev V.N. Spravochnik po teorii avtomaticheskogo upravlenija / Pod red. A.A. Krasovskogo. M.: Nauka. 1987. 712 s.
- Dykhta V.A., Samsonjuk O.N. Optimalnoe impulsnoe upravlenie s prilozhenijami. M.: Fizmatlit. 2000. 256 s.
- Vanko V.I., Ermoshina O.V., Kuvyrkin G.N. Variacionnoe ischislenie i optimalnoe upravlenie: Ucheb. dlja vuzov / Pod red. V.S. Zarubina, A.P. Krishhenko. 3-e izd., ispr. M.: Izd-vo MGTU im. N.EH. Baumana. 2006. 488 s.
- Kotin V.V. Rost, konkurencija i migracija // Biomedicinskaja radioehlektronika. 2014. № 10. S. 43-49.
- Kotin V.V. Prognozirovanie zabolevaemosti: dinamicheskie modeli i vremennye rjady // Biotekhnosfera. 2014. № 3. S. 45-47.