350 rub
Journal Biomedical Radioelectronics №8 for 2015 г.
Article in number:
Determination of the fractal structure of biological objects using packet HarFA
Authors:
A.M. Nosovskii - Dr.Sc. (Biol.), Leading Research Scientist. Employee, Institute of Medical- Biological Problems (Moscow). E-mail: nam@imbp.ru A.A. Oleshkevich - Ph. Dr. (Biol.), Associate Professor, Department of Informational Technologies, Mathe-matics and Physics, Moscow State Academy of Veterinary Medicine and Biotechnology. E-mail: kompsoti-ta@gmail.com I.V. Kutlicova - Senior Lecturer, Department of Informational Technologies, Mathematics and Physics, Moscow State Academy of Veterinary Medicine and Biotechnology. E-mail: ivk-b@yandex.ru
Abstract:
Models based on this concept as a «fractal set» used in various fields of natural science in order to describe the different nature structures. Physical fractal can have «statistical» properties and "can be able" to deviate from it sometimes. These fractal structures are called «dynamic». The authors have tested the possibility of using the package «HarFA» in order to determine the fractal dimension in the study of dynamic fractal structures of any biological objects and found the algorithm. This package converts the color image to black and white which is positive for reliable research results. The proposed method allows to determine and to compare the fractal properties of biological microobjects. Now we conduct the research of the fractal analysis applying possibility in blood smears - pictures of different kinds of animals after in vitro blood effect by various physical factors (ultrasonic waves, temperature) and want to direct any changes in the state of blood cells. In order to study in "HarFA" package the stained smears photos of animals - blood (96-300 pixels/inch) were selected. An analysis of those photos can-t always be objective because of quality. To determine the sensitivity of the method the authors conducted frectal analysis of pure skim slide photos; glass-with-dye photos and glass-with-serum photos. While the possibility "HarFA" package testing series we tested all of the color combinations: BW, B + BW, W + BW, B & W with different fractal dimension pitches: 0.1 and 0.01. As a perspective in our further work we selected the BW color combination and the fractal dimension step of 0.1.
Pages: 83-88
References

 

  1. Heinz, Otto Peitgen, Hartmut Jurgens, Deitmar Saupe Chaosand Fractals - Springer Science. 2004. 866 r.
  2. Becker K., Dofler M. Dynamical system and fractals - Cambridge: Cambridge university press. 1990. 399 r.
  3. Keneth Falconer. Fractal Geometry // Matematical Foundations and Applications. Wiley. 2003. 339 r.
  4. Yuval Fisher. Fractal Image Compression. Theory and Application. Springer. Verlag. 1994. 433 r.
  5. AndreevJU.V., DmitrievA.S., Kuminov D.A. KHaoticheskie processory // Uspekhi sovremennojj radioehlektroniki. 1997. № 10. S. 50-79.
  6. Bozhokin S.V., Parshin D.A. Fraktaly i multifraktaly. Izhevsk: NIC «Reguljarnaja i khaoticheskaja dinamika». 2001. 128 s.
  7. Boltjanskijj V.G., Efremovich V.A. Nagljadnaja topologija. M.: Nauka.1983. 60 s.
  8. Bondarenko V.A., Dolnikov V.L. Fraktalnoe szhatie izobrazhenijj po Barnsli-Sloan // Avtomatika i telemekhanika. 1994. № 5. S. 12-20.
  9. Brur KH.V., Djumorte F., van Strin S., Takens F. Struktury v dinamike: konechnomernyjj determinirovannyjj podkhod // Reguljarnaja i khaoticheskaja dinamika. 2003. 336 s.
  10. Vishik M.I. Fraktalnaja razmernost mnozhestv // Sorosovskijj obrazovatelnyjj zhurnal. 1998. № 1. S. 122-127.
  11. Volkova N.A., Verozubov A.P., Zamilov A.V. Kratkie svedenija iz istorii fraktalov // Kompjuternye instrumenty v obrazovanii. 2001. № 5. S. 55-60.
  12. Gazale M. Gnomon: ot faraonov do fraktalov. M. - Izhevsk: Institut kompjuternykh issledovanijj. 2002. 272 s.
  13. Gardner M. Ot mozaik Penrouza k nadezhnym shifram: per. s angl. M.: Mir. 1993. 416 s.
  14. Danilov JU.A. Fraktalnost // Znanie i sila. 1993. № 5. S. 45-51.
  15. Kuznecov S.P. Dinamicheskijj khaos: kurs lekcijj. Sovremennaja teorija kolebanijj i voln. M.: Fizmatlit. 2006. 355 s.
  16. Makarenko N.G.Fraktaly, attraktory, nejjronnye seti i vse takoe. Nauchnaja sessija MIFI 2002. IV Vserossijjskaja nauchno-tekhn. konf. «Nejjroinformatika-2002»: lekcii po nejjroinformatike. CH. 2. M.: MIFI, 2002. 172 s.
  17. SHreder M. Fraktaly, khaos, stepennye rjady. Izhevsk: NIC «Reguljarnaja i khaoticheskaja dinamika». 2001. 528 s.
  18. Glensdorf P., Prigozhin I. Termodinamicheskaja teorija struktury, ustojjchivosti i fluktuacii. M.: Mir. 1973. 280 s.
  19. Sinajj JA.G. O ponjatii ehntropii dinamicheskojj sistemy // DAN SSSR. 1959. T.124. S.768-771.
  20. Zubarev D. N. Neravnovesnaja statisticheskaja termodinamika. M. 1971. 417 s.
  21. Zmeskal O.et al. Fractal Analysis of Image Structures // HarFA - Harmonic and Fractal Image Analysis. 2001. P. 3 - 5.
  22. Kondrakhin I.P., Kurilov N.V., Malakhov A.G. Klinicheskaja laboratornaja diagnostika v veterinarii. M.: Agropromizdat. 1985. S.59-64.