350 rub
Journal Biomedical Radioelectronics №9 for 2014 г.
Article in number:
Use of diagnostic signs in bayesian approach at research of muscular diseases
Authors:
E.P. Popechitelev - Dr.Sc. (Eng.), Professor, Saint Petersburg Electrotechnical University «LETI»
N.T. Abdulaev - Ph.D. (Eng.), Associate Professor, Head of Department, Azerbaijan Technical University
G.E. Abdulaeva - Post-graduate Student, Azerbaijan Technical University
Abstract:
For differential diagnostics of a number of widespread neuromuscular diseases (a demiyeliniziruyushchy polyneuropathy of DPNP, a karpalny tunnel syndrome of KTS, a kubitalny tunnel syndrome of KubTS) applicability of Bayesian approach to differential diagnostics of the specified diseases is shown. The main difficulty is presented thus by calculation of conditional probabilities of values of diagnostic signs for this simptomokompleks at the patient at each concrete disease from set of the diagnosed. In case of lack of a statistical database about influence of values of diagnostic signs from the presented simptomokompleks of the studied patient decide on use of technology of an indistinct logical conclusion. By means of rules of indistinct produktion functions of accessory of entrance and output linguistic variables are formed and on their basis conditional probabilities of diagnostic signs pay off. Use of Bayesian approach and fuzzy logic gives the chance of establishment of reliable estimates of existence at the patient of a diagnosed disease. The computer realization of a diagnostic task is enabled in the program Matlab 7 environment by means of a tool FIS-Fuzzy Inference System package.
Pages: 62-66
References

  1. Zhmudyak M.L, Povalixin A.N., Strebukov A.V. i dr. Diagnostika zabolevanij metodami teorii veroyatnostej. Barnaul: AltGTU. 2006. 168 s.
  2. Zhmudyak M.L., Povalixin A.N., Lev G.Sh.  Primenenie veroyatnostny'x metodov v diagnostike // Sb. materialov konf. «Diskretny'j analiz i issledovanie operaczij». Novosibirsk: Izd-vo instituta matematiki. 2004. S. 203.
  3. Hanson K.M., Canningham G.S. A computational  approach to Bayesian inference. «Computing science and statistics». VA 2230-7460. 1996. P. 202-211.
  4. Abdullaev N.T., Ismailova K.Sh. Oczenka informaczionnoj dostovernosti diagnosticheskix zaklyuchenij v e'lektromiografii s pomoshh'yu metoda nechetkogo logicheskogo vy'voda //Informaczionno-izmeritel'ny'e i upravlyayushhie sistemy'. 2012. T.10. № 4. S.60 - 67.
  5. Abdullaev N.T., Ismailova K.Sh. Primenenie nejronny'x setej dlya raspoznavananiya patologicheskix izmeneniya v stimulyaczionnoj e'lektromiogramme // Mediczinskaya texnika. 2011. № 6. S.1 - 7.
  6. Kasatkina L.F., Gil'vanova O.V. E'lektromiograficheskie metody' issledovaniya v diagnostike nervno-my'shechny'x zabolevanij. Igol'chataya e'lektromiografiya. M.: Medika. 2010. 416 s.
  7. Abdullaev N.T., Dy'shin O.A., Abdullaeva G.E'. Netradiczionnoe ispol'zovanie formul Bajesa dlya differenczial'noj diagnostiki nervno-my'shechny'x zabolevanij // Biomediczinskaya radioe'lektronika. 2014. №1. S.50-58.