350 rub
Journal Biomedical Radioelectronics №12 for 2014 г.
Article in number:
Automatic detection of the pupil-s center for adaptation system using natural user interface for people with disabilities
Authors:
M.N. Pilipenko - Engineer, Bauman Moscow State Technical University, Moscow, Russia
E.Yu. Latysheva - Post-graduate Student, Bauman Moscow State Technical University, Moscow, Russia
I.N. Spiridonov - Dr.Sc. (Eng.), Professor, Head of Department, Bauman Moscow State Technical University, Moscow, Russia
Abstract:
Rehabilitation of people with disabilities is one of the trend of medicine at the moment. Special equipment for the care, orientation, training, orthopedic products, training and sports equipment develops to extend the functionality of the human possibilities. Pupil movement and facial expression can be used for screen point acquisition. With the advent of technology feature recognition of human motor activity, such as gestures, facial expressions, the movement of the pupils, the development of alternative methods of human-computer interaction became possible. For these purposes, there are a variety of hardware and software products: eye trackers, software (SW) for moving the cursor by the head. Eye trackers require expensive equipment or put on special glasses. Existing software, using an image from the DVR, reflects only the movement of the head and has a low accuracy of positioning the cursor. Proposed solution of automation of management human-s functions is to create a biotechnical system, which provides non-contact control the cursor by the direction of gaze. Webcam as a DVR permits to make the system less expensive. The aim of this work is to develop an algorithm for automatic pupil detection for automatic cursor targeting on the screen. There are various approaches for pupil detection in the video image. However, they have disadvantages like expensive equipments, contact technical means, time consuming to compute features and learning algorithms. In this work, the algorithm automatically determine the position of the pupil center using an adaptive binarization image with subsequent determination of the center of mass of the area corresponding to the position of the pupil. Average frequency of correct determination of the pupil center is 96.1%. The developed algorithm is optimal by the criterion of correct determination of the pupil center position with an accuracy of 5 pixels.
Pages: 38-42
References

  1. Rasporyazhenie Pravitel'stva RF ot 30 dekabrya 2005 g. № 2347-r (red. ot 12.11.2010) «O federal'nom perechne reabilitatsionnykh meropriyatiy, tekhnicheskikh sredstv reabilitatsii i uslug, predostavlyaemykh invalidu».
  2. Holmqvist K., Nyström M., Andersson R., Dewhurst R., et al. A comprehensive guide to methods and measures. Oxford University Press, 2011. S. 560.
  3. Glenstrup, et. al. Eye Controlled Media: Present and Future State, University of Copenhagen DIKU (Institute of Computer Science). Universitetsparken 1 DK-2100. Denmark. 1995.
  4. Petruk V.I., Samorodov A.V., Spiridonov I.N. Primenenie lokal'nykh binarnykh shablonov k resheniyu zadachi raspoznavaniya lits // Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie. 2011. Spets. vyp. Biometricheskie tekhnologii. S. 58-63.
  5. Kashapova L.Kh., Latysheva Ye.Yu., Spiridonov I.N. Algoritm raspoznavaniya emotsional'nogo sostoyaniya po izobrazheniyam litsa s ispol'zovaniem diskriminantnogo analiza i fil'trov Gabora // Meditsinskaya tekhnika. 2012. № 3. S. 1-4.
  6. Drewes H. Eye gaze tracking for human computer interaction. Ludwig Maximilians University. Munich. 2010. Р. 1-164.
  7. Product Description. Tobii 50 Series. Copyright © Tobii Technology AB. 2004
  8. Margrit Betke, James Gips, Peter Fleming. The camera mouse: Visual tracking of body features to provide computer access for people with severe disabilities // IEEE Trans Neural Syst Rehabil Eng. 2002. V. 10. № 1. Р. 1-10.
  9. Kalman S.L., Keller-Markus T., Lorincz A., and the NIP Group. Use of Headmouse for Persons with Special Communication Needs: Preliminary Results // Alternative and Augmented Communication. Conference. Zolyom. Sk. 2003.
  10. Enable Viacam, http://eviacam.sourceforge.net/
  11. Zhang L. Estimation of eye and mouth corner point position in a knowledge-based coding system / Digital Compression Technologies and Systems for Video Communications. Berlin, Germany. October 1996 // SPIE. 1996. V. 2952. Р. 21-28.
  12. Huang J. and Wechsler H. Eye Detection Using Optimal Wavelet Packets and Radial Basis Functions (RBFs) // International Journal of Pattern Recognition and Artificial Intelligence. 1999. V. 13. № 7.
  13. Asadifard M. and Shanbezadeh J. Automatic Adaptive Center of Pupil Detection Using Face Detection and CDF Analysis // Proc. Int'l MultiConf. of Engineers and Computer Scientists. 2010.
  14. Somaya Adwan, Arof H. Modified Integral Projection Method for Eye Detection using Dynamic Time Warping // International Journal of Innovative Computing, Information and Control. 2012. V. 8. № 1.
  15. Zhou Z. and Geng X. Projection functions for eye detection // Journal of Pattern Recognition. 2004. V. 37. № 5. Р. 1049-1056.
  16. Takegami T., Gotoh T., Kagei S., Minamikawa-Tachino R. A Hough Based Eye Direction Detection Algorithm without On-site Calibration // Proceedings of the 7th Digital Image Computing: Techniques and Applications. 2003. Р. 459-468.
  17. Scott D., Findlay J.M. Visual search, eye movements and display units // Human factors report. University of Durham. South Road. Durham DH1 3LE. UK. 1993.
  18. Hallett P.E. Eye movements (K. Boff, L. Kaufman, J. Thomas, eds). Handbook of Perception and Human Perfo­rmance I. 1986. Р. 10.25-10.28.
  19. Zhu Z., Ji Q. Robust Real-Time Eye Detection and Tracking under Variable Lighting Conditions and Various Face Orientations // Computer Vision and Image Understanding. V. 98. № 1. Special issue on eye detection and tracking. 2005. Р. 124-154.
  20. Prett U. Tsifrovaya obrabotka izobrazheniy: Per. s angl. M.: Mir. 1982. 480 s.
  21. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazheniy. M.: Tekhnosfera. 2005. 1072 s.
  22. StatSoft, Inc. Электронный учебник по статистике. М.: StatSoft. 2012. WEB: http://www.statsoft.ru/home/text- book/default.htm.