350 rub
Journal Biomedical Radioelectronics №1 for 2012 г.
Article in number:
Principles of the Test-Object for Metrological Control of the Laser Doppler Flowmetry Apparatuses
Authors:
A.V. Dunaev, E.A. Zherebtsov, D.A. Rogatkin
Abstract:
The development of any new method of measurement is largely determined the development of its metrological support. At present, in laser Doppler flowmetry (LDF) technique this is an issue of comparison of the metrological characteristics of individual devices of one manufacturer, as well as various manufacturers to detect hidden defects and failures. It requires standardization, metrological certification and checking of all instruments of LDF to obtain accurate and comparable to the different instruments to each other quantitative diagnostic information. Usually, in measuring techniques, such problems can be solved through the creation and standardization of special devices such as working standards. Now most commonly as test-objects it use colloids of light-scattering particles that simulate the motion of the blood corpuscles due to Brownian motion of particles in solution. But such systems do not have sufficient accuracy and stability. An approach to constructing test-objects for the LDF is to bring the light-scattering particles in motion in the direction collinear propagation vector of the probing radiation. The proposed solution is using of piezoelectric vibrator or other electrodynamic system as the actuator without using an intermediate mechanical system. It was made the mock of the test-object with a preliminary study modes of its operation.
Pages: 8-16
References
  1. Рогаткин Д.А., Дунаев А.В., Лапаева Л.Г. Метрологическое обеспечение методов и приборов неинвазивной медицинской спектрофотометрии // Медицинская техника. 2010. №2 (260). С. 30 - 37.
  2. Rogatkin D.A., Lapaeva L.G., Petritskaya E.N., Sidorov V.V., Shumskiy V.I. Multifunctional laser noninvasive spectroscopic system for medical diagnostics and metrological provisions for that // Proc. SPIE. 2009. V. 7368 - 73681Y.
  3. Лазерная допплеровская флоуметрия микроциркуляции крови / под ред. А.И. Крупаткина и В.В. Сидорова. М.: Медицина. 2005. 256 с.
  4. Liebert A., Leahy M., Maniewski R. Multichannel laser-Doppler probe for blood perfusion measurements with depth discrimination // Medical & Biological Engineering & Computing. 1998. № 11. P. 740 - 747.
  5. Оптическая биомедицинская диагностика. В 2-х т. / пер. с англ. под ред. В.В. Тучина. М.: Физматлит. 2007.
  6. Дунаев А.В., Жеребцов Е.А., Рогаткин Д.А. Методы и приборы неинвазивной медицинской спектрофотометрии: пути обоснования специализированных медико-технических требований // Приборы. 2011. №1 (127). С. 40 - 49.
  7. Fredriksson I., Larsson M., Salomonsson F., Strömberg T. Improved calibration procedure for laser Doppler perfusion monitors // Proc. SPIE 7906, 790602. 2011. doi:10.1117/12.871938.
  8. Di Ninni P., Martelli F., Zaccanti G.Toward a reference standard for tissue phantoms // Proc. SPIE 7906, 79060M. 2011. doi:10.1117/12.874658.
  9. Soelkner G., Mitic G., Lohwasser R. Monte Carlo simulation and laser Doppler flow measurements with high penetration depth in biological tissuelike head phantoms // Applied Optics. 1997. V.36. № 22. 1997. P. 5647 - 5654.